寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第1頁
寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第2頁
寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第3頁
寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第4頁
寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

寧波市鄞州區(qū)市級名校2023-2024學(xué)年中考五模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.計(jì)算的值()A.1 B. C.3 D.2.如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.3.已知一元二次方程有一個(gè)根為2,則另一根為A.2 B.3 C.4 D.84.平面直角坐標(biāo)系中,若點(diǎn)A(a,﹣b)在第三象限內(nèi),則點(diǎn)B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.tan30°的值為()A.12 B.32 C.36.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個(gè)數(shù),那么該幾何體的主視圖是()A. B. C. D.7.三個(gè)等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°8.如圖,在平行四邊形ABCD中,點(diǎn)E在邊DC上,DE:EC=3:1,連接AE交BD于點(diǎn)F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:19.地球上的陸地面積約為149000000千米2,用科學(xué)記數(shù)法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千210.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽槎?、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.對于任意實(shí)數(shù)a、b,定義一種運(yùn)算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.12.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個(gè)圖案中有__________白色紙片,第n個(gè)圖案中有__________張白色紙片.13.七巧板是我們祖先的一項(xiàng)創(chuàng)造,被譽(yù)為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過程的認(rèn)識,求出平行四邊形EFGH_____.14.如圖,在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,a)在直線y=2x+2與直線y=2x+4之間,則a的取值范圍是_____.15.PA、PB分別切⊙O于點(diǎn)A、B,∠PAB=60°,點(diǎn)C在⊙O上,則∠ACB的度數(shù)為_____.16.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒lcm的速度向終點(diǎn)C運(yùn)動,將△PQC沿BC翻折,點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動的時(shí)間為t秒,若四邊形QP′CP為菱形,則t的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.18.(8分)如圖,直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點(diǎn)E,使得直線AE恰好與⊙M相切,求此時(shí)點(diǎn)E的坐標(biāo).19.(8分)已知點(diǎn)A、B分別是x軸、y軸上的動點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A、B、C、D各點(diǎn)依次排列)為正方形時(shí),稱這個(gè)正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4).寫出伴侶正方形在拋物線上的另一個(gè)頂點(diǎn)坐標(biāo)_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個(gè)數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)20.(8分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機(jī)準(zhǔn)備生產(chǎn)空氣凈化設(shè)備,該企業(yè)決定從以下兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價(jià)為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價(jià)為80元,每件產(chǎn)品銷售價(jià)為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時(shí)需上交0.5x2萬元的特別關(guān)稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤y1(萬元)、y2(萬元)與相應(yīng)生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;(2)分別求出這兩個(gè)投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個(gè)投資方案?21.(8分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對稱軸.22.(10分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.(1)求m的值及一次函數(shù)解析式;(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).23.(12分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長線于點(diǎn)E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.24.(1)解方程組(2)若點(diǎn)是平面直角坐標(biāo)系中坐標(biāo)軸上的點(diǎn),(1)中的解分別為點(diǎn)的橫、縱坐標(biāo),求的最小值及取得最小值時(shí)點(diǎn)的坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)有理數(shù)的加法法則進(jìn)行計(jì)算即可.【詳解】故選:A.【點(diǎn)睛】本題主要考查有理數(shù)的加法,掌握有理數(shù)的加法法則是解題的關(guān)鍵.2、C【解析】

過點(diǎn)B作BE⊥AD于E,構(gòu)建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對應(yīng)的圖像.【詳解】如圖,過點(diǎn)B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項(xiàng),C符合題意.故選C.【點(diǎn)睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.3、C【解析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點(diǎn):根與系數(shù)的關(guān)系.4、D【解析】分析:根據(jù)題意得出a和b的正負(fù)性,從而得出點(diǎn)B所在的象限.詳解:∵點(diǎn)A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點(diǎn)B在第四象限,故選D.點(diǎn)睛:本題主要考查的是象限中點(diǎn)的坐標(biāo)特點(diǎn),屬于基礎(chǔ)題型.明確各象限中點(diǎn)的橫縱坐標(biāo)的正負(fù)性是解題的關(guān)鍵.5、D【解析】

直接利用特殊角的三角函數(shù)值求解即可.【詳解】tan30°=33,故選:D【點(diǎn)睛】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】

由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關(guān)系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應(yīng)該為1,2,3,故選A.【點(diǎn)睛】本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關(guān)系是解題關(guān)鍵.7、B【解析】

先根據(jù)圖中是三個(gè)等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【詳解】∵圖中是三個(gè)等邊三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故選B.【點(diǎn)睛】考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關(guān)鍵.8、B【解析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.9、C【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).解:149

000

000=1.49×2千米1.故選C.把一個(gè)數(shù)寫成a×10n的形式,叫做科學(xué)記數(shù)法,其中1≤|a|<10,n為整數(shù).因此不能寫成149×106而應(yīng)寫成1.49×2.10、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點(diǎn)睛】本題考查一元一次不等式的整數(shù)解以及實(shí)數(shù)的運(yùn)算,通過解不等式找出x<是解題的關(guān)鍵.12、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎(chǔ)上,依次多3個(gè);根據(jù)其中的規(guī)律得出第n個(gè)圖案中有白色紙片即可.詳解:∵第1個(gè)圖案中有白色紙片3×1+1=4張第2個(gè)圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個(gè)圖案中有白色紙片3×4+1=13張第n個(gè)圖案中有白色紙片3n+1張,故答案為:13、3n+1.點(diǎn)睛:考查學(xué)生的探究能力,解題時(shí)必須仔細(xì)觀察規(guī)律,通過歸納得出結(jié)論.13、1【解析】

根據(jù)七巧板的性質(zhì)可得BI=IC=CH=HE,因?yàn)镾△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點(diǎn)G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【詳解】由七巧板性質(zhì)可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點(diǎn)G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點(diǎn)睛】本題考查了七巧板的性質(zhì)、等腰直角三角形的性質(zhì)及平行四邊形的面積公式,熟知七巧板的性質(zhì)是解決問題的關(guān)鍵.14、【解析】

計(jì)算出當(dāng)P在直線上時(shí)a的值,再計(jì)算出當(dāng)P在直線上時(shí)a的值,即可得答案.【詳解】解:當(dāng)P在直線上時(shí),,當(dāng)P在直線上時(shí),,則.故答案為【點(diǎn)睛】此題主要考查了一次函數(shù)與一元一次不等式,關(guān)鍵是掌握函數(shù)圖象經(jīng)過的點(diǎn),必能使解析式左右相等.15、60°或120°.【解析】

連接OA、OB,根據(jù)切線的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點(diǎn)A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當(dāng)C在D處時(shí),∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【點(diǎn)睛】本題考查的是切線的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.16、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點(diǎn)睛】

此題主要考查了菱形的性質(zhì),勾股定理,關(guān)鍵是要熟記定理的內(nèi)容并會應(yīng)用.三、解答題(共8題,共72分)17、(1)證明見解析;(1)32【解析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點(diǎn),∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點(diǎn)睛:本題考查了切線的判定和相似三角形的性質(zhì)和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關(guān)鍵.18、(1)詳見解析;(2)(,1).【解析】

(1)根據(jù)勾股定理可得AB的長,即⊙M的直徑,根據(jù)同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構(gòu)建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計(jì)算EF和AF的長,可得點(diǎn)E的坐標(biāo).【詳解】(1)∵點(diǎn)A(,0)與點(diǎn)B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點(diǎn)A作AE⊥AB于E,交BD的延長線于點(diǎn)E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點(diǎn)E的坐標(biāo)為(,1).【點(diǎn)睛】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.19、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應(yīng)的拋物線分別為;;,偶數(shù).【解析】

(1)設(shè)正方形ABCD的邊長為a,當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí),可知3a=,求出a,

(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,

(3)本問的拋物線解析式不止一個(gè),求出其中一個(gè).【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)伴侶正方形.當(dāng)點(diǎn)A在x軸正半軸、點(diǎn)B在y軸負(fù)半軸上時(shí),∴AO=1,BO=1,∴正方形ABCD的邊長為,當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí),設(shè)正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時(shí),m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點(diǎn)坐標(biāo)為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數(shù)的解析式為y=,(3)根據(jù)題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標(biāo)為(﹣1,3);設(shè)過D與C的拋物線的解析式為:y=ax2+b,把D和C的坐標(biāo)代入得:,解得,∴滿足題意的拋物線的解析式為y=x2+;同理可得D的坐標(biāo)可以為:(7,﹣3);(﹣4,7);(4,1),;對應(yīng)的拋物線分別為;;,所求的任何拋物線的伴侶正方形個(gè)數(shù)為偶數(shù).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題.靈活運(yùn)用相關(guān)知識是解題關(guān)鍵.20、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-125a(萬元),10(萬元);(3)當(dāng)40<a<80時(shí),選擇方案一;當(dāng)a=80時(shí),選擇方案一或方案二均可;當(dāng)80<a<100時(shí),選擇方案二.【解析】

(1)根據(jù)題意直接得出y1與y2與x的函數(shù)關(guān)系式即可;(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因?yàn)椹?.5<0,可求出y2的最大值;(3)第三問要分兩種情況決定選擇方案一還是方案二.當(dāng)2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數(shù)),y2=100x﹣0.5x2(1≤x≤120,x為正整數(shù));(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當(dāng)x=125時(shí),y1最大值=(120﹣a)×125=110﹣125a(萬元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時(shí),y2最大值=10(萬元);(3)∵由110﹣125a>10,∴a<80,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論