四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題含解析_第1頁
四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題含解析_第2頁
四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題含解析_第3頁
四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題含解析_第4頁
四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省宜賓季期重點中學2023-2024學年中考數(shù)學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.鄭州某中學在備考2018河南中考體育的過程中抽取該校九年級20名男生進行立定跳遠測試,以便知道下一階段的體育訓練,成績如下所示:成績(單位:米)2.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運動員成績的眾數(shù)是5B.這些運動員成績的中位數(shù)是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.07252.的負倒數(shù)是()A. B.- C.3 D.﹣33.已知M,N,P,Q四點的位置如圖所示,下列結論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補4.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.5.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.6.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個7.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.8.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.49.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經過點O',則k的值為()A.2 B.4 C.4 D.810.下列博物院的標識中不是軸對稱圖形的是()A. B.C. D.11.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.12.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若分式的值為正數(shù),則x的取值范圍_____.14.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2315.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.16.如圖,AB是⊙O的切線,B為切點,AC經過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.17.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.18.(﹣12)﹣2﹣(3.14﹣π)0三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.20.(6分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當?shù)巧嚼|車的吊箱經過點A到達點B時,它經過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.(6分)在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)的頂點、的坐標分別為,.請在如圖所示的網格平面內作出平面直角坐標系;請作出關于軸對稱的;點的坐標為.的面積為.22.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.23.(8分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.24.(10分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調查結果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.類別頻數(shù)(人數(shù))頻率小說0.5戲劇4散文100.25其他6合計1根據(jù)圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.25.(10分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結果即可).26.(12分)如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點A、B,與x軸交于點C.(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直線AB的解析式.27.(12分)某跳水隊為了解運動員的年齡情況,作了一次年齡調查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:本次接受調查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)方差、平均數(shù)、中位數(shù)和眾數(shù)的計算公式和定義分別對每一項進行分析,即可得出答案.【詳解】由表格中數(shù)據(jù)可得:A、這些運動員成績的眾數(shù)是2.35,錯誤;B、這些運動員成績的中位數(shù)是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.【點睛】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計算公式是本題的關鍵,平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.2、D【解析】

根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【詳解】根據(jù)倒數(shù)的定義得:2×=1.

因此的負倒數(shù)是-2.

故選D.【點睛】本題考查了倒數(shù),解題的關鍵是掌握倒數(shù)的概念.3、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.4、D【解析】

畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負數(shù),兩個負數(shù)相比,絕對值大的反而?。虼?,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.6、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.7、B【解析】

由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數(shù)為-2;

故選:B.【點睛】本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而?。?、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.9、C【解析】

根據(jù)題意可以求得點O'的坐標,從而可以求得k的值.【詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數(shù)y=(x>0)的圖象經過點O',

∴2=,得k=4,

故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化,解題的關鍵是利用數(shù)形結合的思想和反比例函數(shù)的性質解答.10、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關鍵在于利用軸對稱圖形的概念判斷選項正誤11、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.12、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x>1【解析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.14、1.【解析】

先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件15、1.1【解析】

求出EC,根據(jù)菱形的性質得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質,解題關鍵是根據(jù)菱形的性質證明△DEF∽△CEB,然后根據(jù)相似三角形的性質可求解.16、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.17、22.5°【解析】

四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質;等腰三角形的性質.18、3.【解析】試題分析:分別根據(jù)零指數(shù)冪,負指數(shù)冪的運算法則計算,然后根據(jù)實數(shù)的運算法則求得計算結果.原式=4-1=3.考點:負整數(shù)指數(shù)冪;零指數(shù)冪.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1),;(2)證明見解析.【解析】試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.20、纜車垂直上升了186m.【解析】

在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,銳角三角函數(shù)的定義,結合圖形理解題意是解決問題的關鍵.21、(1)見解析;(2)見解析;(3);(4)4.【解析】

(1)根據(jù)C點坐標確定原點位置,然后作出坐標系即可;(2)首先確定A、B、C三點關于y軸對稱的點的位置,再連接即可;(3)根據(jù)點在坐標系中的位置寫出其坐標即可(4)利用長方形的面積剪去周圍多余三角形的面積即可.【詳解】解:(1)如圖所示:(2)如圖所示:(3)結合圖形可得:;(4).【點睛】此題主要考查了作圖??軸對稱變換,關鍵是確定組成圖形的關鍵點的對稱點位置.22、(1)見解析;(2)2.【解析】

(1)根據(jù)相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據(jù)銳角三角函數(shù)和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【點睛】本題考查相似三角形的判定與性質、平行四邊形的性質、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答23、(1)詳見解析;(2)1+【解析】

(1)連接OD,結合切線的性質和直徑所對的圓周角性質,利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結.如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學生對圓的認識,熟練掌握圓的性質是解題的關鍵.24、(1)41(2)15%(3)【解析】

(1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);(2)根據(jù)其他類的頻數(shù)和總人數(shù)求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.25、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設OD為x,則BD=AD=3,在RT△ODA中應用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點B'落在A點右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點B'落在A點左邊,∵折疊∴BC=B'C=4,CE=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論