![2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析_第1頁](http://file4.renrendoc.com/view12/M0A/04/11/wKhkGWY3SQWAX5G7AAFZcQyz7es934.jpg)
![2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析_第2頁](http://file4.renrendoc.com/view12/M0A/04/11/wKhkGWY3SQWAX5G7AAFZcQyz7es9342.jpg)
![2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析_第3頁](http://file4.renrendoc.com/view12/M0A/04/11/wKhkGWY3SQWAX5G7AAFZcQyz7es9343.jpg)
![2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析_第4頁](http://file4.renrendoc.com/view12/M0A/04/11/wKhkGWY3SQWAX5G7AAFZcQyz7es9344.jpg)
![2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析_第5頁](http://file4.renrendoc.com/view12/M0A/04/11/wKhkGWY3SQWAX5G7AAFZcQyz7es9345.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年廣東省茂名市鎮(zhèn)隆第一中學高二數(shù)學文下學期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.平面內(nèi)有定點A、B及動點P,設命題甲“|PA|+|PB|是定值”,命題乙“點P的軌跡為以A、B為焦點的橢圓”,那么A.甲是乙的充分不必要條件
B.甲是乙的必要不充分條件
C.甲是乙的充分且必要條件
D.甲既不是乙的充分也不是必要條件參考答案:B略2.關于x的不等式的解集不是空集,則實m的取值范圍是A.m3
B.m<-3
C.m≥3
D.m≤-3參考答案:A3.如圖,正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是A.動點A′在平面ABC上的射影在線段AF上B.恒有平面A′GF⊥平面BCEDC.三棱錐A′—FED的體積有最大值D.異面直線A′E與BD不可能垂直參考答案:D略4.圓C1:與圓C2:的位置關系是(
)A、外離
B
相交
C
內(nèi)切
D
外切參考答案:B略5.已知數(shù)列{an}的通項公式為(n∈N*),若前n項和為9,則項數(shù)n為(
)A.99
B.100
C.101
D.102參考答案:A略6.在△ABC中,內(nèi)角所對的邊長分別為a,b,c.()A. B. C. D.參考答案:A略7.執(zhí)行如圖所示的程序框圖,則輸出s的值為()A. B. C. D.參考答案:D初始條件:,第1次判斷0<8,是,第2次判斷2<8,是,第3次判斷4<8,是,第4次判斷6<8,是,第5次判斷8<8,否,輸出;故選D.考點:程序框圖.8.已知,則函數(shù)在點處的切線與坐標軸圍成的三角形的面積為A. B. C.1 D.2參考答案:A9.從1,2,3,4這四個數(shù)中一次隨機地取兩個數(shù),則其中一個數(shù)是另一個數(shù)的兩倍的概率是(
)A.
B.
C.
D.參考答案:B10.雙曲線右支點上一點P到右焦點的距離為2,則P到左準線的距離為(
)(A).6
(B).8
(C).10
(D).12參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.拋物線的焦點坐標是
▲
.參考答案:12.某幾何體的三視圖如圖所示,若俯視圖是邊長為2的等邊三角形,則這個幾何體的體積等于
▲
;表面積等于
▲
.參考答案:,由三視圖可知,該幾何體是如圖所示的四棱錐P-ABCD圖中長方體中P為棱的中點,到BC的距離為,∴四棱錐體積為,四棱錐的表面積為,故答案為,
(2).
13.已知圓O的有n條弦,且任意兩條弦都彼此相交,任意三條弦不共點,這n條弦將圓O分成了an個區(qū)域,(例如:如圖所示,圓O的一條弦將圓O分成了2(即a1=2)個區(qū)域,圓O的兩條弦將圓O分成了4(即a2=4)個區(qū)域,圓O的3條弦將圓O分成了7(即a3=7)個區(qū)域),以此類推,那么an+1與an(n≥2)之間的遞推式關系為:參考答案:an+1=an+n+1【考點】歸納推理.【分析】根據(jù)題意,分析可得,n﹣1條弦可以將平面分為f(n﹣1)個區(qū)域,n條弦可以將平面分為f(n)個區(qū)域,增加的這條弦即第n個圓與每條弦都相交,可以多分出n+1個區(qū)域,即可得答案.【解答】解:分析可得,n﹣1條弦可以將平面分為f(n﹣1)個區(qū)域,n條弦可以將平面分為f(n)個區(qū)域,增加的這條弦即第n個圓與每條弦都相交,可以多分出n+1個區(qū)域,即an+1=an+n+1,故答案為an+1=an+n+114.已知點F1、F2分別是橢圓的左、右焦點,過F1且垂直于x軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則該橢圓的離心率為
.
參考答案:略15.設a>0,b>0,若是3a與3b的等比中項,則+的最小值是
.參考答案:4【考點】基本不等式在最值問題中的應用.【分析】先根據(jù)等比中項的性質(zhì)求得a+b的值,進而利用基本不等式取得ab的最大值,把+化簡整理,根據(jù)ab的范圍,求得答案.【解答】解:∵是3a與3b的等比中項∴3a?3b=3a+b=3∴a+b=1∴ab≤=(當a=b時等號成立)∴+==≥4.故答案為:416.1若則----參考答案:16略17.在平面直角坐標系xOy中,已知圓C:與軸交于A,B兩點,若動直線l與圓C相交于M,N兩點,且的面積為4,若P為MN的中點,則的面積最大值為_____.參考答案:8【分析】根據(jù)題意求出點A、B的坐標,然后根據(jù)△CMN的面積為4求得MN的長以及高PD的長,再利用面積公式,求得結(jié)果.【詳解】當y=0時,解得x=-1或x=3,即A(-1,0),B(3,0)圓的標準方程:圓心C(1,2)半徑r=△CMN的面積為4即則,即要使△PAB的面積最大,則此時三角形的高PD=2+2=4,AB=3-(-1)=4則△PAB的面積故答案為8【點睛】本題主要考查了直線與圓的位置關系,以及面積公式等綜合知識,解題的關鍵是在于能否知道直線與圓的相交關系,屬于中檔題.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(12分)如圖是一個扇環(huán)(圓環(huán)的一部分),兩段圓弧的長分別為l1,l2,另外兩邊的長為h,先把這個扇環(huán)與梯形類比,然后根據(jù)梯形的面積公式寫出這個扇環(huán)的面積并證明其正確性.參考公式:扇形面積公式S=lr(l是扇形的弧長,r是扇形半徑).弧長公式l=rα(r是扇形半徑,α是扇形的圓心角).參考答案:梯形的面積公式為
將類比為梯形的上、下底,為梯形的高
則扇環(huán)的面積為
……………………4分
將扇環(huán)補成扇形(如圖),設其圓心角為,小扇形的半徑為,則大扇形的半徑為,
∵………6分
∴
………………………7分
∴………………9分[來
………………11分∴
………………12分19.經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如下圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.以X(單位:t≤100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將T表示為X的函數(shù);(Ⅱ)根據(jù)直方圖估計利潤T不少于57000元的概率.參考答案:略20.設橢圓C:+=1(a>b>0)過點M(,),且離心率為,直線l過點P(3,0),且與橢圓C交于不同的A、B兩點.(1)求橢圓C的方程;(2)求?的取值范圍.參考答案:【考點】橢圓的簡單性質(zhì).【分析】(1)由橢圓的離心率e===,則=①,將M(,),代入橢圓方程,即可求得橢圓的標準方程;(2)設其方程為:y=k(x﹣3),代入橢圓方程,由△>0,解得:k2<,=(x1﹣3,y1),=(x2﹣3,y2),則?=(x1﹣3)(x2﹣3)+y1y2=(k2+1)[x1x2﹣3(x1+x2)+9],由韋達定理可知,代入求得?=2+,由k的取值范圍,即可求得?的取值范圍.【解答】解:(1)由已知可得:由橢圓的離心率e===,則=①,由點M(,)在橢圓上,②,解得:a2=6,b2=4,∴橢圓C的方程為:;(2)①當直線l的斜率不存在時,l的方程為:x=3與橢圓無交點.故直線l的斜率存在,設其方程為:y=k(x﹣3),A(x1,y1),B(x2,y2),由,整理得:(3k2+2)x2﹣18k2x+27k2﹣12=0,∵△=(18k2)2﹣4(3k2+2)(27k2﹣12)>0,解得:k2<,x1+x2=,x1x2=,(6分)∵=(x1﹣3,y1),=(x2﹣3,y2)∴?=(x1﹣3)(x2﹣3)+y1y2=(x1﹣3)(x2﹣3)+k2(x1﹣3)(x2﹣3),=(k2+1)[x1x2﹣3(x1+x2)+9]=(k2+1)(﹣+9)==2+,(10分)∵0≤k2≤,∴<≤,∴<2+≤3,∴?∈(,3].(12分)【點評】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的位置關系,考查向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.21.(本題滿分12分) 設過點的直線分別與軸和軸交于兩點,點與點關于軸對稱,為坐標原點,若且. (Ⅰ)求點的軌跡的方程; (Ⅱ)過的直線與軌跡交于兩點,求的取值范圍.參考答案:(Ⅰ)∵過點P(x,y)的直線分別與x軸和y軸交于A,B兩點,點Q與點P關于y軸對稱,∴Q(-x,y),設A(a,0),B(0,b), ∵O為坐標原點, ∴=(x,y-b),=(a-x,-y),=(-x,y),, ∵=3且 ∴, 解得點P的軌跡M的方程為.(Ⅱ)設過F(2,0)的直線方程為y=kx-2k, 聯(lián)立,得(3k2+1)x2-12k2x+12k2-3=0, 設A(x1,y1),B(x2,y2),則x1+x2=,x1x2=, =(x1-2,y1),=(x2-2,y2),∴=(x1-2)(x2-2)+y1y2=(1+k2)(x1-2)(x2-2)=(1+k2)[x1x2-2(x1+x2)+4]=(1+k2)(+4)=,∴當k2→∞的最小值→;當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國雙機頭無滑臺高周波機市場調(diào)查研究報告
- 2025-2030年戶外排球場企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年投影設備智能防塵行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年國畫山水教學行業(yè)跨境出海戰(zhàn)略研究報告
- 如何運用技術(shù)提升施工安全管理效能考核試卷
- 2025年遙控車庫上滑門項目可行性研究報告
- 2025年三腳支架項目可行性研究報告
- 2025至2030年鋅合金配件項目投資價值分析報告
- 2025年臺式血壓儀項目可行性研究報告
- 2025至2030年英派克板項目投資價值分析報告
- 平衡計分卡-化戰(zhàn)略為行動
- 幼兒園小班下學期期末家長會PPT模板
- 礦山安全培訓課件-地下礦山開采安全技術(shù)
- 著衣母嬰臥像教學設計
- 【課件】DNA片段的擴增及電泳鑒定課件高二下學期生物人教版(2019)選擇性必修3
- GB/T 6417.1-2005金屬熔化焊接頭缺欠分類及說明
- 2023年湖北成人學位英語考試真題及答案
- 《社會主義市場經(jīng)濟理論(第三版)》第七章社會主義市場經(jīng)濟規(guī)則論
- 《腰椎間盤突出》課件
- simotion輪切解決方案與應用手冊
- 柴油發(fā)電機運行檢查記錄表格
評論
0/150
提交評論