版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
菏澤單縣北城三中聯(lián)考2024年中考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=32.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為x萬千克,根據(jù)題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=103.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°4.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.55.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.216.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.7.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB8.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣9.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對10.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個二、填空題(共7小題,每小題3分,滿分21分)11.若一組數(shù)據(jù)1,2,3,的平均數(shù)是2,則的值為______.12.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.13.化簡÷=_____.14.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.15.如果,那么代數(shù)式的值是______.16.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當點B的移動距離為時,四邊ABC1D1為矩形;當點B的移動距離為時,四邊形ABC1D1為菱形.17.如圖,四邊形ABCD內接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點D,交AB于點E.(1)求證:△ADE~△ABC;(2)當AC=8,BC=6時,求DE的長.19.(5分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?20.(8分)在平面直角坐標系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點A(﹣3,0),與y軸交于點B,此拋物線頂點C到x軸的距離為1.(1)求拋物線的表達式;(2)求∠CAB的正切值;(3)如果點P是x軸上的一點,且∠ABP=∠CAO,直接寫出點P的坐標.21.(10分)如圖,已知矩形ABCD中,連接AC,請利用尺規(guī)作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)22.(10分)如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖像交于點和點,且經過點.求反比例函數(shù)和一次函數(shù)的表達式;求當時自變量的取值范圍.23.(12分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值.24.(14分)一輛汽車,新車購買價30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價值為萬元,求這輛車第二、三年的年折舊率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.2、A【解析】
根據(jù)題意可得等量關系:原計劃種植的畝數(shù)-改良后種植的畝數(shù)=10畝,根據(jù)等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據(jù)題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.3、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質,三角形內角和定理點評:解答本題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.4、A【解析】
連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.5、A【解析】
根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.6、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.7、C【解析】
根據(jù)線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.8、D【解析】
首先根據(jù)矩形的性質,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點睛】本題考查了矩形的性質與角平分線的性質以及勾股定理的應用,解題的關鍵是熟練的掌握矩形的性質與角平分線的性質以及勾股定理的應用.9、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.10、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據(jù)這組數(shù)據(jù)的平均數(shù)是1和平均數(shù)的計算公式列式計算即可.【詳解】∵數(shù)據(jù)1,1,3,的平均數(shù)是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數(shù)的定義,根據(jù)平均數(shù)的定義建立方程求解是解題的關鍵.12、15【解析】
根據(jù)圓的基本性質得出四邊形OABC為菱形,∠AOB=60°,然后根據(jù)同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質問題,屬于基礎題型.根據(jù)題意得出四邊形OABC為菱形是解題的關鍵.13、x+1【解析】分析:根據(jù)根式的除法,先因式分解后,把除法化為乘法,再約分即可.詳解:解:原式=÷=?(x+1)(x﹣1)=x+1,故答案為x+1.點睛:此題主要考查了分式的運算,關鍵是要把除法問題轉化為乘法運算即可,注意分子分母的因式分解.14、【解析】
因為A點的坐標為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當A點或C點在曲線上時a的值即可得到答案.【詳解】解:∵A點的坐標為(a,a),∴C(a﹣1,a﹣1),當C在雙曲線y=時,則a﹣1=,解得a=+1;當A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關鍵在于根據(jù)題意找到關鍵點,然后將關鍵點的坐標代入反比例函數(shù)求得確定值即可.15、1【解析】分析:對所求代數(shù)式根據(jù)分式的混合運算順序進行化簡,再把變形后整體代入即可.詳解:故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.16、,.【解析】試題分析:當點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為矩形;當四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質.17、50【解析】試題分析:連結EF,如圖,根據(jù)圓內接四邊形的性質得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結EF,如圖,∵四邊形ABCD內接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內接四邊形的性質.三、解答題(共7小題,滿分69分)18、(1)見解析;(2).【解析】
(1)根據(jù)兩角對應相等,兩三角形相似即可判定;(2)利用相似三角形的性質即可解決問題.【詳解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴,∴,∴DE.【點睛】本題考查了相似三角形的判定和性質、勾股定理、線段的垂直平分線的性質等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考??碱}型.19、-2,-1,0,1【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).20、(4)y=﹣x4﹣4x+3;(4);(3)點P的坐標是(4,0)【解析】
(4)先求得拋物線的對稱軸方程,然后再求得點C的坐標,設拋物線的解析式為y=a(x+4)4+4,將點(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐標,然后依據(jù)兩點間的距離公式可得到BC、AB,AC的長,然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;(3)連接BC,可證得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入個數(shù)據(jù)可得OP的值,可得P點坐標.【詳解】解:(4)由題意得,拋物線y=ax4+4ax+c的對稱軸是直線,∵a<0,拋物線開口向下,又與x軸有交點,∴拋物線的頂點C在x軸的上方,由于拋物線頂點C到x軸的距離為4,因此頂點C的坐標是(﹣4,4).可設此拋物線的表達式是y=a(x+4)4+4,由于此拋物線與x軸的交點A的坐標是(﹣3,0),可得a=﹣4.因此,拋物線的表達式是y=﹣x4﹣4x+3.(4)如圖4,點B的坐標是(0,3).連接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC為直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如圖4,連接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴點P的坐標是(4,0).【點睛】本題主要考查二次函數(shù)的圖像與性質,綜合性大.21、詳見解析【解析】
利用尺規(guī)過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【點睛】本題主要考查了尺規(guī)作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.22、(1),;(2)或.【解析】
(1)把點A坐標代入可求出m的值即可得反比例函數(shù)解析式;把點A、點C代入可求出k、b的值,即可得一次函數(shù)解析式;(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式可求出點B的坐標,根據(jù)圖象,求出一次函數(shù)圖象在反比例函數(shù)圖象的上方時,x的取值范圍即可.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 燃氣輸配課程設計
- 研學課程設計留學生
- 2024至2030年木制裝飾盒項目投資價值分析報告
- 2024至2030年臺式液壓鉚接機項目投資價值分析報告
- 消防及聯(lián)動系統(tǒng)課程設計
- 畢業(yè)論文課課程設計
- 2025版生態(tài)保護區(qū)國有土地租賃合同示范文本3篇
- 2025版貨運代理服務合同環(huán)保責任履行規(guī)范3篇
- 無人系統(tǒng)基礎課課程設計
- 2025安置房項目投資合作買賣合同范本
- 部編版五年級語文上冊作文總復習課件
- 體育集體備課記錄
- 錨桿密實度檢測
- 跳繩興趣小組活動總結
- 文物保護項目加固工程監(jiān)理細則
- 肋骨骨折查房演示
- 五年級語文備課組工作總結三篇
- 浙江農林大學土壤肥料學
- “戲”說故宮智慧樹知到答案章節(jié)測試2023年中央戲劇學院
- 四大名著《西游記》語文課件PPT
- 三年級道德與法治下冊第一單元我和我的同伴教材解讀新人教版
評論
0/150
提交評論