2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題_第1頁
2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題_第2頁
2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題_第3頁
2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題_第4頁
2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年黑龍江省重點中學(xué)九上數(shù)學(xué)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.代數(shù)式有意義的條件是()A. B. C. D.2.在平面直角坐標(biāo)系中,如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④b2﹣4ac>0,其中正確的命題有()A.1個 B.2個 C.3個 D.4個3.若將半徑為12cm的半圓形紙片圍成一個圓錐的側(cè)面,則這個圓錐的底面圓半徑是()A.2cm B.3cm C.4cm D.6cm4.下表是二次函數(shù)y=ax2+bx+c的部分x,y的對應(yīng)值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推斷m的值為()A.﹣2 B.0 C. D.25.如圖所示,已知圓心角,則圓周角的度數(shù)是()A. B. C. D.6.把方程化成的形式,則的值分別是()A.4,13 B.-4,19 C.-4,13 D.4,197.如圖,PA是⊙O的切線,OP交⊙O于點B,如果,OB=1,那么BP的長是()A.4 B.2 C.1 D.8.把二次函數(shù)化成的形式是下列中的()A. B.C. D.9.對于函數(shù)y=,下列說法錯誤的是()A.它的圖像分布在第一、三象限 B.它的圖像與直線y=-x無交點C.當(dāng)x>0時,y的值隨x的增大而增大 D.當(dāng)x<0時,y的值隨x的增大而減小10.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是(

)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD二、填空題(每小題3分,共24分)11.已知三點A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標(biāo)為____.12.若點C是線段AB的黃金分割點且AC>BC,則AC=_____AB(用含無理數(shù)式子表示).13.如圖,在與中,,要使與相似,還需添加一個條件,這個條件可以是____________(只需填一個條件)14.定義為函數(shù)的“特征數(shù)”如:函數(shù)的“特征數(shù)”是,函數(shù)的“特征數(shù)”是,在平面直角坐標(biāo)系中,將“特征數(shù)”是的函數(shù)的圖象向下平移3個單位,再向右平移1個單位,得到一個新函數(shù),這個新函數(shù)的“特征數(shù)”是_______.15.如圖是二次函數(shù)y=ax2﹣bx+c的圖象,由圖象可知,不等式ax2﹣bx+c<0的解集是_______.16.如圖,圓是一個油罐的截面圖,已知圓的直徑為5,油的最大深度(),則油面寬度為__________.17.某商品原售價300元,經(jīng)過連續(xù)兩次降價后售價為260元,設(shè)平均每次降價的百分率為x,則滿足x的方程是______.18.如圖,⊙O的半徑OC=10cm,直線l⊥OC,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移____________cm時能與⊙O相切.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,點A在x軸的正半軸上,B為⊙O上一點,過點A、B的直線與y軸交于點C,且OA2=AB?AC.(1)求證:直線AB是⊙O的切線;(2)若AB=,求直線AB對應(yīng)的函數(shù)表達(dá)式.20.(6分)如圖,在陽光下的電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米,同一時刻,豎起一根1米高的竹竿MN,其影長MF為1.5米,求電線桿的高度.21.(6分)某小型工廠9月份生產(chǎn)的、兩種產(chǎn)品數(shù)量分別為200件和100件,、兩種產(chǎn)品出廠單價之比為2:1,由于訂單的增加,工廠提高了、兩種產(chǎn)品的生產(chǎn)數(shù)量和出廠單價,10月份產(chǎn)品生產(chǎn)數(shù)量的增長率和產(chǎn)品出廠單價的增長率相等,產(chǎn)品生產(chǎn)數(shù)量的增長率是產(chǎn)品生產(chǎn)數(shù)量的增長率的一半,產(chǎn)品出廠單價的增長率是產(chǎn)品出廠單價的增長率的2倍,設(shè)產(chǎn)品生產(chǎn)數(shù)量的增長率為(),若10月份該工廠的總收入增加了,求的值.22.(8分)學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:(1)本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;(2)將條形統(tǒng)計圖補(bǔ)充完整;(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.23.(8分)如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC于E.(1)求證:AB=AC;(2)求證:DE為⊙O的切線.24.(8分)在平面直角坐標(biāo)系中,拋物線與軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.(1)①直接寫出拋物線的對稱軸是________;②用含a的代數(shù)式表示b;(2)橫、縱坐標(biāo)都是整數(shù)的點叫整點.點A恰好為整點,若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(不含邊界)恰有1個整點,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.25.(10分)甲口袋中有2個白球、1個紅球,乙口袋中有1個白球、1個紅球,這些球除顏色外無其他差別.分別從每個口袋中隨機(jī)摸出1個球.(1)求摸出的2個球都是白球的概率.(2)請比較①摸出的2個球顏色相同②摸出的2個球中至少有1個白球,這兩種情況哪個概率大,請說明理由26.(10分)如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對稱軸為x=,請你解答下列問題:(1)m=,拋物線與x軸的交點為.(2)x取什么值時,y的值隨x的增大而減小?(3)x取什么值時,y<0?

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)二次根式和分式成立的條件得到關(guān)于x的不等式,求解即可.【詳解】解:由題意得,解得.故選:B本題考查了代數(shù)式有意義的條件,一般情況下,若代數(shù)式有意義,則分式的分母不等于1,二次根式被開方數(shù)大于等于1.2、C【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=﹣1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(﹣3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=﹣1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷,根據(jù)根的判別式解答即可.【詳解】由圖象可知:拋物線開口向上,對稱軸為直線x=﹣1,過(1,0)點,把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(﹣3,0),因此方程ax2+bx+c=0的兩根分別為﹣3和1;故③是正確的;由圖可得,拋物線有兩個交點,所以b2﹣4ac>0,故④正確;故選C.考查二次函數(shù)的圖象和性質(zhì),拋物線通常從開口方向、對稱軸、頂點坐標(biāo)、與x軸,y軸的交點,以及增減性上尋找其性質(zhì).3、D【解析】解:圓錐的側(cè)面展開圖的弧長為2π×12÷2=12π(cm),∴圓錐的底面半徑為12π÷2π=6(cm),故選D.4、C【分析】首先根據(jù)表中的x、y的值確定拋物線的對稱軸,然后根據(jù)對稱性確定m的值即可.【詳解】解:觀察表格發(fā)現(xiàn)該二次函數(shù)的圖象經(jīng)過點(,﹣)和(,﹣),所以對稱軸為x==1,∵,∴點(﹣,m)和(,)關(guān)于對稱軸對稱,∴m=,故選:C.本題考查了二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是通過表格信息確定拋物線的對稱軸.5、A【詳解】是同弧所對的圓周角和圓心角,,因為圓心角∠BOC=100°,所以圓周角∠BAC=50°本題考查圓周角和圓心角,解本題的關(guān)鍵是掌握同弧所對的圓周角和圓心角關(guān)系,然后根據(jù)題意來解答6、D【分析】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確應(yīng)用,把左邊配成完全平方式,右邊化為常數(shù).【詳解】解:∵x2+8x-3=0,∴x2+8x=3,∴x2+8x+16=3+16,∴(x+4)2=19,∴m=4,n=19,故選:D.配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.7、C【分析】根據(jù)題意連接OA由切線定義可知OA垂直AP且OA為半徑,以此進(jìn)行分析求解即可.【詳解】解:連接OA,已知PA是⊙O的切線,OP交⊙O于點B,可知OA垂直AP且OA為半徑,所以三角形OAP為直角三角形,∵,OB=1,∴,OA=OB=1,∴OP=2,BP=OP-OB=2-1=1.故選C.本題結(jié)合圓的切線定義考查解直角三角形,熟練掌握圓的切線定義以及解直角三角形相關(guān)概念是解題關(guān)鍵.8、C【分析】先提取二次項系數(shù),然后再進(jìn)行配方即可.【詳解】.故選:C.考查了將一元二次函數(shù)化成y=a(x-h)2+k的形式,解題關(guān)鍵是正確配方.9、C【解析】A.k=1>0,圖象位于一、三象限,正確;B.∵y=?x經(jīng)過二、四象限,故與反比例函數(shù)沒有交點,正確;C.當(dāng)x>0時,y的值隨x的增大而增大,錯誤;D.當(dāng)x<0時,y的值隨x的增大而減小,正確,故選C.10、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,∵四邊形ABCD的對角線互相平分,∴四邊形ABCD是平行四邊形,∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,∴四邊形ABCD是矩形,故選D.考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.二、填空題(每小題3分,共24分)11、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據(jù)勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內(nèi)切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標(biāo),即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設(shè)⊙P的半徑為r,根據(jù)三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標(biāo)為(6,4),故答案為:(6,4).本題主要考查勾股定理、三角形的內(nèi)切圓半徑公式及切線長定理,根據(jù)三角形的內(nèi)切圓半徑公式及切線長定理求出點P的坐標(biāo)是解題的關(guān)鍵.12、【分析】直接利用黃金分割的定義求解.【詳解】解:∵點C是線段AB的黃金分割點且AC>BC,∴AC=AB.故答案為:.本題考查了黃金分割的定義,點C是線段AB的黃金分割點且AC>BC,則,正確理解黃金分割的定義是解題的關(guān)鍵.13、∠B=∠E【分析】根據(jù)兩邊及其夾角法:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可得添加條件:∠B=∠E.【詳解】添加條件:∠B=∠E;∵,∠B=∠E,∴△ABC∽△AED,故答案為:∠B=∠E(答案不唯一).此題考查相似三角形的判定,解題關(guān)鍵是掌握相似三角形的判定定理.14、【分析】首先根據(jù)“特征數(shù)”得出函數(shù)解析式,然后利用平移規(guī)律得出新函數(shù)解析式,化為一般式即可判定其“特征數(shù)”.【詳解】由題意,得“特征數(shù)”是的函數(shù)的解析式為,平移后的新函數(shù)解析式為∴這個新函數(shù)的“特征數(shù)”是故答案為:此題主要考查新定義下的二次函數(shù)的平移,解題關(guān)鍵是理解題意.15、x<-1或x>1【分析】根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標(biāo),然后根據(jù)函數(shù)圖象寫出x軸上方部分的x的取值范圍即可.【詳解】解:由對稱性得:拋物線與x軸的另一個交點為(-1,0),∴不等式ax2﹣bx+c<0的解集是:x<-1或x>1,故答案為:x<-1或x>1.本題考查了二次函數(shù)與不等式組,二次函數(shù)的性質(zhì),此類題目,利用數(shù)形結(jié)合的思想求解是解題的關(guān)鍵.16、1【分析】連接OA,先求出OA和OD,再根據(jù)勾股定理和垂徑定理即可求出AD和AB.【詳解】解:連接OA∵圓的直徑為5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根據(jù)勾股定理可得:AD=∴AB=2AD=1m故答案為:1.此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.17、.【分析】根據(jù)降價后的售價=降價前的售價×(1-平均每次降價的百分率),可得降價一次后的售價是,降價一次后的售價是,再根據(jù)經(jīng)過連續(xù)兩次降價后售價為260元即得方程.【詳解】解:由題意可列方程為故答案為:.本題考查一元二次方程的實際應(yīng)用,增長率問題,解題的關(guān)鍵是讀懂題意,找到等量關(guān)系,正確列出方程,要注意增長的基礎(chǔ).18、4或1【分析】要使直線l與⊙O相切,就要求CH與DH,要求這兩條線段的長只需求OH弦心距,為此連結(jié)OA,由直線l⊥OC,由垂徑定理得AH=BH,在Rt△AOH中,求OH即可.【詳解】連結(jié)OA∵直線l⊥OC,垂足為H,OC為半徑,∴由垂徑定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直線l向左平移4cm時能與⊙O相切或向右平移1cm與⊙O相切.故答案為:4或1.本題考查平移直線與與⊙O相切問題,關(guān)鍵是求弦心距OH,會利用垂徑定理解決AH,會用勾股定理求OH,掌握引輔助線,增加已知條件,把問題轉(zhuǎn)化為三角形形中解決.三、解答題(共66分)19、(1)見解析;(2)【分析】,(1)連接OB,根據(jù)題意可證明△OAB∽△CAO,繼而可推出OB⊥AB,根據(jù)切線定理即可求證結(jié)論;(2)根據(jù)勾股定理可求得OA=2及A點坐標(biāo),根據(jù)相似三角形的性質(zhì)可得,進(jìn)而可求CO的長及C點坐標(biāo),利用待定系數(shù)法,設(shè)直線AB對應(yīng)的函數(shù)表達(dá)式為y=kx+b,再把點A、C的坐標(biāo)代入求得k、b的值即可.【詳解】(1)證明:連接OB.∵OA2=AB?AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直線AB是⊙O的切線;(2)解:∵∠ABO=90°,,OB=1,∴,∴點A坐標(biāo)為(2,0),∵△OAB∽△CAO,∴,即,∴,∴點C坐標(biāo)為;設(shè)直線AB對應(yīng)的函數(shù)表達(dá)式為y=kx+b,則,∴∴.即直線AB對應(yīng)的函數(shù)表達(dá)式為.本題考查相似三角形的判定及性質(zhì)、圓的切線定理、勾股定理、一次函數(shù)解析式等知識,解題的關(guān)鍵是正確理解題意,求出線段的長及各點的坐標(biāo).20、電線桿子的高為4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一時刻物高與影長的比一定得到AG的長度,加上GB的長度即為電線桿AB的高度.【詳解】過C點作CG⊥AB于點G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:電線桿子的高為4米.此題考查了相似三角形的應(yīng)用,構(gòu)造出直角三角形進(jìn)行求解是解決本題的難點;用到的知識點為:同一時刻物高與影長的比一定.21、5%【分析】根據(jù)題意,列出方程即可求出x的值.【詳解】根據(jù)題意,得整理,得解這個方程,得,(不合題意,舍去)所以的值是5%.此題考查的是一元二次方程的應(yīng)用,掌握實際問題中的等量關(guān)系是解決此題的關(guān)鍵.22、(1)20;(2)作圖見試題解析;(3).【分析】(1)由A類的學(xué)生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補(bǔ)全條形統(tǒng)計圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據(jù)題意得:王老師一共調(diào)查學(xué)生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學(xué)恰好是一位男生和一位女生的概率為:.23、(1)證明見解析;(2)證明見解析;【分析】(1)連接AD,根據(jù)中垂線定理不難求得AB=AC;(2)要證DE為⊙O的切線,只要證明∠ODE=90°即可.【詳解】(1)連接AD;∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂線.∴AB=AC.(2)連接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切線.考點:切線的判定24、(1)①直線x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根據(jù)拋物線的對稱性可以直接得出其對稱軸;②利用對稱軸公式進(jìn)一步求解即可;(1)分兩種情況:①,②,據(jù)此依次討論即可.【詳解】解:(1)①∵當(dāng)x=0時,y=c,∴點A坐標(biāo)為(0,c),∵點A向右平移1個單位長度,得到點B,∴點B(1,c),∵點B在拋物線上,∴拋物線的對稱軸是:直線x=1;故答案為:直線x=1;②∵拋物線的對稱軸是直線:x=1,∴,即;(1)①如圖,若,因為點A(0,c),B(1,c)都是整點,且指定區(qū)域內(nèi)恰有一個整點,因此這個整點D的坐標(biāo)必為(1,c-1),但是從運算層面如何保證“恰有一個”呢,與拋物線的頂點C(1,c-a)做位置與數(shù)量關(guān)系上的比較,必須考慮到緊鄰點D的另一個整點E(1,c-1)不在指定區(qū)域內(nèi),所以可列出不等式組:,解得:;②如圖,若,同理可得:,解得:;綜上所述,符合題意的a的取值范

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論