2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析_第1頁
2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析_第2頁
2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析_第3頁
2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析_第4頁
2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年安徽省宿州市朱小樓中學(xué)高一數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.如圖,的外接圓的圓心為,,,,則等于()A.

B.

C.2

D.3參考答案:B2.二次函數(shù)y=ax2+bx與指數(shù)函數(shù)y=()x的圖象只可能是()A. B. C. D.參考答案:A【考點(diǎn)】指數(shù)函數(shù)的圖象與性質(zhì);二次函數(shù)的圖象.【分析】根據(jù)二次函數(shù)的對(duì)稱軸首先排除B、D選項(xiàng),再根據(jù)a﹣b的值的正負(fù),結(jié)合二次函數(shù)和指數(shù)函數(shù)的性質(zhì)逐個(gè)檢驗(yàn)即可得出答案.【解答】解:根據(jù)指數(shù)函數(shù)可知a,b同號(hào)且不相等則二次函數(shù)y=ax2+bx的對(duì)稱軸<0可排除B與D選項(xiàng)C,a﹣b>0,a<0,∴>1,則指數(shù)函數(shù)單調(diào)遞增,故C不正確故選:A3.已知集合則(

).A.

B.

C.

D.參考答案:C4.已知是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間[-3,7]上所有零點(diǎn)之和為(

)A.4 B.6 C.8 D.12參考答案:C【分析】根據(jù)函數(shù)的奇偶性和對(duì)稱性,判斷出函數(shù)的周期,由此畫出的圖像.由化簡(jiǎn)得,畫出的圖像,由與圖像的交點(diǎn)以及對(duì)稱性,求得函數(shù)在區(qū)間上所有零點(diǎn)之和.【詳解】由于,故是函數(shù)的對(duì)稱軸,由于為奇函數(shù),故函數(shù)是周期為的周期函數(shù),當(dāng)時(shí),,由此畫出的圖像如下圖所示.令,注意到,故上述方程可化為,畫出的圖像,由圖可知與圖像都關(guān)于點(diǎn)(2,0)對(duì)稱,它們兩個(gè)函數(shù)圖像的4個(gè)交點(diǎn)也關(guān)于點(diǎn)對(duì)稱,所以函數(shù)在區(qū)間上所有零點(diǎn)之和為.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性、對(duì)稱性以及周期性,考查函數(shù)零點(diǎn)問題的求解策略,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5.若正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)M,N在AC上運(yùn)動(dòng),,四面體的體積為V,則(

)A. B. C. D.參考答案:C【分析】由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長(zhǎng)為,點(diǎn),在上運(yùn)動(dòng),,如圖所示:點(diǎn)到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點(diǎn)睛】本題考查了正方體的性質(zhì),等體積法求三棱錐的體積,屬于基礎(chǔ)題.6.角α的始邊在x軸正半軸、終邊過點(diǎn)P(3,4),則sinα的值為

A.

B.

C.

D.參考答案:D略7.設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式組,那么m2+n2的取值范圍是()A.(3,7) B.(9,25) C.(13,49) D.(9,49)參考答案:C【考點(diǎn)】簡(jiǎn)單線性規(guī)劃的應(yīng)用.【專題】綜合題.【分析】根據(jù)對(duì)于任意的x都有f(1﹣x)+f(1+x)=0恒成立,不等式可化為f(m2﹣6m+23)<f(2﹣n2+8n),利用f(x)是定義在R上的增函數(shù),可得∴(m﹣3)2+(n﹣4)2<4,確定(m﹣3)2+(n﹣4)2=4(m>3)內(nèi)的點(diǎn)到原點(diǎn)距離的取值范圍,即可求得m2+n2的取值范圍.【解答】解:∵對(duì)于任意的x都有f(1﹣x)+f(1+x)=0恒成立∴f(1﹣x)=﹣f(1+x)∵f(m2﹣6m+23)+f(n2﹣8n)<0,∴f(m2﹣6m+23)<﹣f[(1+(n2﹣8n﹣1)],∴f(m2﹣6m+23)<f[(1﹣(n2﹣8n﹣1)]=f(2﹣n2+8n)∵f(x)是定義在R上的增函數(shù),∴m2﹣6m+23<2﹣n2+8n∴(m﹣3)2+(n﹣4)2<4∵(m﹣3)2+(n﹣4)2=4的圓心坐標(biāo)為:(3,4),半徑為2∴(m﹣3)2+(n﹣4)2=4(m>3)內(nèi)的點(diǎn)到原點(diǎn)距離的取值范圍為(,5+2),即(,7)∵m2+n2表示(m﹣3)2+(n﹣4)2=4內(nèi)的點(diǎn)到原點(diǎn)距離的平方∴m2+n2的取值范圍是(13,49).故選C.【點(diǎn)評(píng)】本題考查函數(shù)的奇偶性與單調(diào)性,考查不等式的含義,解題的關(guān)鍵是確定半圓內(nèi)的點(diǎn)到原點(diǎn)距離的取值范圍.8.下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)椋ǎ?)小明離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);(2)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;(3)小明出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速.A.(4)(1)(2) B.(4)(2)(3) C.(4)(1)(3) D.(1)(2)(4)參考答案:A【考點(diǎn)】3O:函數(shù)的圖象.【分析】根據(jù)小明所用時(shí)間和離開家距離的關(guān)系進(jìn)行判斷.根據(jù)回家后,離家的距離又變?yōu)?,可判斷(1)的圖象開始后不久又回歸為0;由途中遇到一次交通堵塞,可判斷中間有一段函數(shù)值沒有發(fā)生變化;由為了趕時(shí)間開始加速,可判斷函數(shù)的圖象上升速度越來越快.【解答】解:(1)離家不久發(fā)現(xiàn)自己作業(yè)本忘記在家里,回到家里,這時(shí)離家的距離為0,故應(yīng)先選圖象(4);(2)騎著車一路以常速行駛,此時(shí)為遞增的直線,在途中遇到一次交通堵塞,則這段時(shí)間與家的距離必為一定值,故應(yīng)選圖象(1);(3)最后加速向?qū)W校,其距離隨時(shí)間的變化關(guān)系是越來越快,故應(yīng)選圖象(2).故答案為:(4)(1)(2),故選:A.【點(diǎn)評(píng)】本題主要考查函數(shù)的圖象的識(shí)別和判斷,通過分析實(shí)際情況中離家距離隨時(shí)間變化的趨勢(shì),找出關(guān)鍵的圖象特征,對(duì)四個(gè)圖象進(jìn)行分析,即可得到答案.9.在四面體中,分別是的中點(diǎn),若,則與所成的角的度數(shù)為()A.

B.

C.

D.參考答案:C略10.在下列圖象中,函數(shù)的圖象可能是(

)參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.從1至169的自然數(shù)中任意取出3個(gè)數(shù)構(gòu)成以整數(shù)為公比的遞增等比數(shù)列的取法有_種.參考答案:解析:若取出的3個(gè)數(shù)構(gòu)成遞增等比數(shù)列,則有。由此有.當(dāng)固定時(shí),使三個(gè)數(shù)為整數(shù)的的個(gè)數(shù)記作。由,知應(yīng)是的整數(shù)部分.,,,,,,,,.因此,取法共有.

12.函數(shù)y=3cos2x﹣4sinx+1的值域?yàn)?/p>

.參考答案:[﹣3,]【考點(diǎn)】HW:三角函數(shù)的最值;3W:二次函數(shù)的性質(zhì).【分析】化簡(jiǎn)函數(shù)y,利用換元法設(shè)sinx=t,再結(jié)合二次函數(shù)的圖象與性質(zhì),即可求出函數(shù)y的值域.【解答】解:化簡(jiǎn)可得y=4﹣3sin2x﹣4sinx,設(shè)sinx=t,則t∈[﹣1,1],換元可得y=﹣3t2﹣4t+4=﹣3(t+)2+,由二次函數(shù)的性質(zhì)得,當(dāng)t=﹣時(shí),函數(shù)y取得最大值,當(dāng)t=1時(shí),函數(shù)y取得最小值﹣3,所以函數(shù)y的值域?yàn)閇﹣3,].故答案為:[﹣3,].13.已知函數(shù),若,則實(shí)數(shù)a的取值范圍為

。參考答案:(-∞,-2)∪(3,+∞)14.已知f(2x+1)=x2﹣2x,則f(5)=.參考答案:0【考點(diǎn)】函數(shù)的值.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】令2x+1=t,可得x=,代入所給的條件求得f(t)=﹣(t﹣1),由此求得f(5)的值.【解答】解:∵已知f(2x+1)=x2﹣2x,令2x+1=t,可得x=,∴f(t)=﹣(t﹣1),故f(5)=4﹣4=0,故答案為0.【點(diǎn)評(píng)】本題主要考查用換元法求函數(shù)的解析式,求函數(shù)的值,屬于基礎(chǔ)題.15.某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行15km后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是___km.參考答案:5【分析】根據(jù)題意,畫出圖形,運(yùn)用正弦定理,求解.【詳解】根據(jù)題意,畫出如下圖的示意圖:點(diǎn)A為開始出發(fā)點(diǎn),點(diǎn)C為燈塔,點(diǎn)B是船沿南偏東60°的方向航行15km后的位置.所以有,利用正弦定理可得:.【點(diǎn)睛】本題考查了正弦定理的應(yīng)用.16.函數(shù)f(x)=,則=

.參考答案:417.若2,則_____.參考答案:【分析】由,得,代入,求得,,即可求解的值,得到答案.【詳解】由題意知,得,代入,解得,所以,所以.故答案為:.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)設(shè)函數(shù),且函數(shù)的圖象經(jīng)過點(diǎn).(1)求實(shí)數(shù)的值;(2)求函數(shù)的最小值及此時(shí)值的集合.參考答案:解:(1)由已知cos=2,得m=1.

(2)由(1)得f(x)=1+sin2x+cos2x=1+sin,

∴當(dāng)sin=-1時(shí),f(x)取得最小值1-,

由sin=-1得,2x+=2kπ-,

即x=kπ-(k∈Z)

所以f(x)取得最小值時(shí),x值的集合為{x|x=kπ-,k∈Z}.略19.已知函數(shù)f(x)=9x﹣a?3x+1+a2(x∈[0,1],a∈R),記f(x)的最大值為g(a).(Ⅰ)求g(a)解析式;(Ⅱ)若對(duì)于任意t∈[﹣2,2],任意a∈R,不等式g(a)≥﹣m2+tm恒成立,求實(shí)數(shù)m的范圍.參考答案:【考點(diǎn)】二次函數(shù)的性質(zhì).【分析】(Ⅰ)令u=3x∈[1,3],得到f(x)=h(u)=u2﹣3au+a2,分類討論即可求出,(Ⅱ)先求出g(a)min=g()=﹣,再根據(jù)題意可得﹣m2+tm≤﹣,利用函數(shù)的單調(diào)性即可求出.【解答】解:(Ⅰ)令u=3x∈[1,3],則f(x)=h(u)=u2﹣3au+a2.當(dāng)≤2即a≤時(shí),g(a)=h(u)min=h(3)=a2﹣9a+9;當(dāng)>2即a>時(shí),g(a)=h(u)min=h(1)=a2﹣3a+1;故g(a)=(Ⅱ)當(dāng)a≤時(shí),g(a)=a2﹣9a+9,g(a)min=g()=﹣;當(dāng)a時(shí),g(a)=a2﹣3a+1,g(a)min=g()=﹣;因此g(a)min=g()=﹣;對(duì)于任意任意a∈R,不等式g(a)≥﹣m2+tm恒成立等價(jià)于﹣m2+tm≤﹣.令h(t)=mt﹣m2,由于h(t)是關(guān)于t的一次函數(shù),故對(duì)于任意t∈[﹣2,2]都有h(t)≤﹣等價(jià)于,即,解得m≤﹣或m≥.【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題,是一道中檔題20.已知向量=(3,﹣1),=(2,1),求:(1)(+2)?及|﹣|的值;(2)與夾角θ的余弦值.參考答案:【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算.【分析】(1)求出各向量的坐標(biāo)即可得出數(shù)量積與模長(zhǎng);(2)計(jì)算,||,||,代入夾角公式計(jì)算.【解答】解:(1)=(7,1),=(1,﹣2),∴(+2)?=7×2+1×1=15,|﹣|==.(2)=3×2﹣1×1=5,||=,||=,∴cos<>==.21.是否存在實(shí)數(shù)λ,使函數(shù)f(x)=2cos2x-4λcosx-1的最小值是-?若存在,求出所有的λ和對(duì)應(yīng)的x值,若不存在,試說明理由.參考答案:解:f(x)=2(cosx-)2-2-1,∵0≤x≤,∴0≤cosx≤1,∵最小值為,∴(Ⅰ)或(Ⅱ)或(Ⅲ),由(Ⅰ)解得,這是(Ⅱ)無解,(Ⅲ)無解,所以存在實(shí)數(shù),它的值是.略22.已知函數(shù)f(x)=是定義在(﹣1,1)上的奇函數(shù),且f()=.(1)確定函數(shù)f(x)的解析式.(2)用定義證明f(x)在(﹣1,1)上是增函數(shù).(3)解不等式f(t﹣1)+f(t)<0.參考答案:【考點(diǎn)】奇偶性與單調(diào)性的綜合.【分析】(1)由奇函數(shù)得f(0)=0,求得b,再由已知,得到方程,解出a,即可得到解析式;(2)運(yùn)用單調(diào)性的定義,注意作差、變形和定符號(hào)、下結(jié)論幾個(gè)步驟;(3)運(yùn)用奇偶性和單調(diào)性,得到不等式f(t﹣1)+f(t)<0即為f(t﹣1)<﹣f(t)=f(﹣t),得到不等式組,解出即可.【解答】(1)解:函數(shù)f(x)=是定義在(﹣1,1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論