版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
圖論
1
1.最短路徑..............................................................................4
1)Dijkstra之優(yōu)雅stl...............................................................4
2)Dijkstra_模擬數(shù)組..............................................................4
3)Dijkstra陣......................................................................5
4)SPFA優(yōu)化........................................................................6
5)差分約束系統(tǒng).....................................................................7
2.K短路................................................................................7
1)Readme............................................................................7
2)K短路一無(wú)環(huán)一Astar.................................................................7
3)K短路三環(huán)一Yen..................................................................10
4)K短路一無(wú)環(huán)一Yen_字典序..........................................................12
5)K短路一有環(huán)_Astar................................................................15
6)K短路一有環(huán).Yen..................................................................17
7)次短路經(jīng)&&曲徑數(shù)................................................................20
3.連通分支.............................................................................21
1)圖論一SCC........................................................................21
2)2-sat............................................................................23
3)BCC..............................................................................25
4.生成樹(shù)...............................................................................27
1)Kruskal..........................................................................27
2)Prim_MST是否唯一...............................................................28
3)Prim陣..........................................................................29
4)度限制MST.......................................................................30
5)次小生成樹(shù)......................................................................34
6)次小生成樹(shù)_陣..................................................................36
7)嚴(yán)格次小生成樹(shù)..................................................................37
8)K小生成樹(shù)偽代碼................................................................41
9)MST計(jì)數(shù)一連通性狀壓一N0I07.......................................................41
10)曼哈頓MST.......................................................................43
11)曼哈頓MST一基數(shù)排序............................................................46
12)生成樹(shù)變MST_sgu206.............................................................49
13)生成樹(shù)計(jì)數(shù).....................................................................52
14)最小生成樹(shù)計(jì)數(shù).................................................................53
15)最小樹(shù)形圖.....................................................................56
16)圖論—最小樹(shù)形圖_double_poj3壹64...............................................58
5.最大流...............................................................................60
1)EdmondsKarp算法...............................................................60
2)SAP鄰接矩陣....................................................................61
3)SAP模擬數(shù)組....................................................................62
4)SAP_BFS..........................................................................63
5)sgu壹85_AC(兩條最短路徑)......................................................64
6)有上下界的最大流一數(shù)組模擬.....................................................67
6.費(fèi)用流...............................................................................69
1)費(fèi)用流_SPFA_i^^................................................................69
2)費(fèi)用流_SPFA」肖圈................................................................70
3)ZKW數(shù)由模擬....................................................................72
7.割.................................................................................73
1)最大權(quán)閉合圖...................................................................73
2)最大密度子圖....................................................................73
3)二分圖的最小點(diǎn)權(quán)覆蓋...........................................................74
4)二分圖的最大點(diǎn)權(quán)獨(dú)立集.........................................................75
5)無(wú)向圖最小割_Stoer-Wagner算法.................................................75
6)無(wú)向圖最大割....................................................................76
7)無(wú)向圖最大割(壹6ms)............................................................76
8.二分圖...............................................................................78
1)二分圖最大匹配Edmonds..........................................................78
2)必須邊..........................................................................79
3)最小路徑覆蓋(路徑不相交).....................................................79
2
4)二分圖最大匹配HK..........................................................................................................................80
5)KM算法一樸素_0(n4)........................................................................................................................81
6)KM算法一slack_0(n3)......................................................................................................................82
7)點(diǎn)BCC_二分判出一(2942圓桌騎士).................................................84
8)二分圖多重匹配..................................................................86
9)二分圖判定......................................................................88
10)最小路徑覆蓋(帶權(quán))...........................................................89
9.一般圖匹配..........................................................................90
1)帶花樹(shù)一表.......................................................................90
2)帶花樹(shù)一陣.......................................................................93
10.各種回路...........................................................................96
1)CPP_無(wú)向圖.....................................................................96
2)TSP_雙調(diào)歐幾里得................................................................97
3)哈密頓回路_dirac............................................................................................................................98
4)哈密頓回路一競(jìng)賽圖..............................................................100
5)哈密頓路徑一競(jìng)賽圖..............................................................102
6)哈密頓路徑一最優(yōu)&狀壓..........................................................102
11.分治樹(shù)............................................................................104
1)分治樹(shù)—路徑不經(jīng)過(guò)超過(guò)K個(gè)標(biāo)記節(jié)點(diǎn)的最長(zhǎng)路徑..................................104
2)分治樹(shù)_路徑和不超過(guò)K的點(diǎn)對(duì)數(shù).................................................107
3)分治樹(shù)—樹(shù)鏈剖分_Count_hnoi壹036.........................................................................................109
4)分治樹(shù)_QTree壹一樹(shù)鏈剖分.......................................................113
5)分治樹(shù)_P0J3237(QTree壹升級(jí))_樹(shù)鏈剖分.........................................117
6)分治樹(shù)_QTree2一樹(shù)鏈剖分.........................................................122
7)Qtree3..............................................................................................................................................125
8)分治樹(shù)_QTree3(2)一樹(shù)鏈剖分.....................................................128
9)分治樹(shù)_QTree4_他人的..........................................................130
10)分治樹(shù)_QTree5_無(wú)代碼..........................................................135
12.經(jīng)典問(wèn)題..........................................................................135
1)歐拉回路一遞歸.................................................................135
3)同構(gòu)一樹(shù).........................................................................137
4)同構(gòu)一無(wú)向圖....................................................................140
5)同構(gòu)一有向圖....................................................................141
6)弦圖一表.........................................................................143
7)弦圖一陣........................................................................147
8)最大面一樸素....................................................................149
9)最大團(tuán)_快速....................................................................149
10)極大團(tuán).........................................................................150
11)havel定理.....................................................................151
12)Topological...................................................................................................................................151
13)LCA...................................................................................................................................................152
14)LCA2RMQ...........................................................................................................................................154
15)樹(shù)中兩點(diǎn)路徑上最大-最小邊Jarjan擴(kuò)展........................................157
16)樹(shù)上的最長(zhǎng)路徑.................................................................160
17)floyd最小環(huán)...................................................................161
18)支配集—樹(shù)......................................................................162
19)prufer編碼—樹(shù)的計(jì)數(shù)..........................................................164
20)獨(dú)立集_支配集_匹配............................................................165
21)最小截?cái)?......................................................................168
3
最短路徑
Dijkstra之優(yōu)雅stl
#include<queue>
usingnamespacestd;
#definemaxn壹000
structDijkstra{
typedefpair<int,int>T;//first:權(quán)值,second:索弓I
vector<T>E[maxn];//邊
intd[maxn];//最短的路徑
intp[maxn];//父節(jié)點(diǎn)
priority_queue<T,vector<T>,greater<T>>q;
voidclearEdge(){
for(inti=0;i<maxn;i++)
E[i].clear();
}
voidaddEdge(inti,intj,intval){
E[i].push_back(T(val,j));
)
voiddijkstra(ints){
memset(d,壹27,sizeof(d));
memset(p,255,sizeof(p));
while(!q.empty())q.pop();
intu,du,v,dv;
d[s]=0;
P[s]=s;
q.push(T(0,s));
while(!q.empty()){
u=q.top().second;
du=q.top().first;
q-pop0;
if(d[u]!=du)continue;
for(vector<T>::iteratorit=E[u].begin();it!=E[u].end();it++){
v=it->second;
dv=du+it->first;
if(d[v]>dv){
d[v]=dv;
p[v]=u;
q.push(T(dv,v));
}
)
)
}
};
Dijkstra—模擬數(shù)組
typedefpair<int,int>T;
structNod{
intb,val,next;
voidinit(intb,intval,intnext){
th(b);th(val);th(next);
}
);
structDijkstra{
Nodbuf[maxm];intlen;//資源
intE[maxn],n;//圖
intd[maxn];//最短距離
voidinit(intn){
th(n);
memset(Er255,sizeof(E));
len=0;
}
voidaddEdge(inta,intb,intval){
buf[len].init(b,val,E[a]);
4
E[a]=len++;
)
voidsolve(ints){
staticpriority_queue<Tzvector<T>,greater<T>>q;
while(!q.empty())q.pop();
memset(d,63,sizeof(d));
d[s]=0;
q.push(T(0,s));
intu,du,v,dv;
while(!q.empty()){
u=q.top().second;
du=q.top().first;
q.pop();
if(du!=d[u])continue;
for(inti=E[u];i!=-壹;i=buf[i].next){
v=buf[i].b;
dv=du+buffi].val;
if(dv<d[v]){
d[v]=dv;
q.push(T(dv,v));
}
)
)
}
};
Dijkstra陣
〃Dijkstra鄰接矩陣,不用heap!
#definemaxn壹壹0
constintinf=0x3f3f3f3f;
structDijkstra{
intE[maxn][maxn],n;//圖,須手動(dòng)傳入!
intd[maxn],p[maxn];//最短路徑,父親
voidinit(intn){
this->n=n;
memset(Ez63,sizeof(E));
)
voidsolve(ints){
staticboolvis[maxn];
memset(vis,0,sizeof(vis));
memset(d,63,sizeof(d));
memset(pz255,sizeof(p));
d[s]=0;
while(壹){
intu=一壹;
for(inti=0;i<n;i++){
if(!vis[i]&&(u==-S||d[i]<d[u])){
u=i;
)
)
if(u==-壹IId[u]==inf)break;
vis[u]=true;
for(intv=0;v<n;v++){
if(d[u]+E[u][v]<d[v]){
d[v]=d[u]+E[u][v];
p[v]=u;
)
)
)
}
}dij;
5
SPFA優(yōu)化
'**
*以F程序加上了vis優(yōu)化,但沒(méi)有加slf和111優(yōu)化(似乎效果不是很明顯)
*下面是這兩個(gè)優(yōu)化的教程,不難實(shí)現(xiàn)
SPFA的兩個(gè)優(yōu)化
該日志由zkw發(fā)表于2009-02-壹309:03:06
SPFA與堆優(yōu)化的Dijkstra的速度之爭(zhēng)不是一天兩天了,不過(guò)從這次USAC0月賽題來(lái)看,SPFA用在
分層圖上會(huì)比較慢。標(biāo)程是堆優(yōu)化的Dijkstra,我寫(xiě)了一個(gè)非常樸素的SPFA,只能過(guò)6/壹壹個(gè)點(diǎn)。SPFA
是按照FIFO的原則更新距離的,沒(méi)有考慮到距離標(biāo)號(hào)的作用。實(shí)現(xiàn)中SPFA有兩個(gè)非常著名的優(yōu)化:SLF
和LLLo
SLF:SmallLabelFirst策略。
實(shí)現(xiàn)方法是,設(shè)隊(duì)首元素為i,隊(duì)列中要加入節(jié)點(diǎn)J,在dj<=di時(shí)加到隊(duì)首而不是隊(duì)尾,否則和普
通的SPFA一樣加到隊(duì)尾。
LLL:LargeLabelLast策略。
實(shí)現(xiàn)方法是,設(shè)隊(duì)列Q中的隊(duì)首元素為i,距離標(biāo)號(hào)的平均值為avg(d),每次出隊(duì)時(shí),若di>avg(d),
把i移到隊(duì)列末尾,如此反復(fù),直到找到一個(gè)i使,di*avg(d)將其出隊(duì)。
加上SLF優(yōu)化后程序多了一行,過(guò)了9/壹壹個(gè)點(diǎn)。你問(wèn)我怎么用SPFAAC這個(gè)題?利用分層圖性
質(zhì),算完一層再算一層,對(duì)每一層計(jì)算用SPFA,加上上面的優(yōu)化,程序飛快:最強(qiáng)的優(yōu)化要利用題目的特
殊性質(zhì)。
*/
#definemaxn壹0壹。
#definemaxm2壹00壹。
#defineth(x)this->x=x
structNod{
intb,val,next;
voidinit(intb,intval,intnext){
th(b);th(val);th(next);
}
);
structSPFA{
Nodbuf[maxm];intlen;
intE[maxn],n;
intd[maxn];
voidinit(intn){
th(n);
memset(E,255,sizeof(E));
len=0;
)
voidaddEdge(inta,intb,intval){
buf[len].init(bzval,E[a]);
E[a]=len++;
)
boolsolve(ints){
staticqueue<int>q;
staticintent[maxn];
staticboolvis[maxn];
while(!q.empty())q.pop();
memset(cntz0,sizeof(ent));
memset(dz63,sizeof(d));
memset(vis,0,sizeof(vis));
d[s]=0;
q.push(s);vis[s]=true;
intu,v;
while(!q.empty()){
u=q.front();q.pop();vis[u]=false;
for(inti=E[u];i!=-壹;i=buf[i].next){
v=buf[i].b;
if(d[u]+buf[i].val<d[v]){
6
d[v]=d[u]+buf[i].val;
if(!vis[v]){
q.push(v);vis[v]=true;
)
if(++ent[v]>n)returnfalse;
}
)
)
returntrue;
}
}spfa;
//poj-2983IstheInformationReliable?
//差分約束系統(tǒng)
intmain(){
intnzm;
charc;
inta,b,d;
while(scanf("%d%d"/&n,&m)!=EOF){
spfa.init(n+壹);
for(inti=壹;i<=n;i++){
spfa.addEdge(0,i,0);
)
for(inti=0;i<m;i++){
scanf(*'%c%d%d"z&c,&a,&b);
1
if(c=='V)spfa.addEdge(azb,一壹);
else{
scanf(n%d",&d);
spfa.addEdge(a,b,-d);
spfa.addEdge(b,a,d);
)
)
if(spfa.solve(0))printf(HReliable\nn);
elseprintf(,,Unreliable\n");
)
return0;
1差分約束系統(tǒng)
1.Xi-Xj<=C[i,j],則j向i連一條邊,權(quán)值為c。
2.加入附加源S,S向每個(gè)點(diǎn)連一條邊,權(quán)值為0。(只是為了保證圖連通)。如果不加附加源也可以,在
SPFA的時(shí)候把所有的d初始化為0,并且所有的點(diǎn)都放入隊(duì)列中。.
然而有的時(shí)候不能所有的d都初始化為0,也不能把所有的點(diǎn)都放入隊(duì)列;這樣的題往往是初始
化一部分d,并且放一部分d到隊(duì)列中,一般用于求極值問(wèn)題;如果是鏈?zhǔn)浇Y(jié)構(gòu),從一頭不行,就試
試另外一頭。還是憑借感覺(jué)去做。具體的證明【【【待補(bǔ)完】】L
3.從S求解單源最短路徑,到每個(gè)點(diǎn)的d值為它的一個(gè)x可行解。
4.如果{x0,x壹,x2…}是一組可行解,則{xO+d,x壹+d,x2+d…}也是。
5.注意序列益處的問(wèn)題,可以適當(dāng)?shù)恼{(diào)整大小,對(duì)序列加減1操作。
6.如果是很多的離散的變量,可以用£xi來(lái)讓他們加起來(lái),并且2xi-£xi-壹進(jìn)行差分約束
K短路
Readme
K短路小節(jié):
壹.Yen適合做無(wú)環(huán)的,AStar適合做有環(huán)的
2.Yen不能有重點(diǎn)?。?!!
3.有的圖可能Astar會(huì)死循環(huán),這時(shí)用Yen最好
K短路—無(wú)環(huán)_Astar
#definemaxn壹0壹0
#definemaxm壹000壹0
7
constintinf=0x3f3f3f3f;
typedefpair<intzint>T;
structTT{
intfirst,second,mask;//保證點(diǎn)的個(gè)數(shù)小于mask的范圍(即30)
TT(intfirst,intsecond,intmask):first(first)rsecond(second),
mask(mask){}
);
structNod{
intb,val,next;
voidinit(intb,intval,intnext){
this->b=b;
this->val=val;
this->next=next;
}
);
structDijkstra{
intE[maxn],n;//圖
Nodbuf[maxm];intlen;//資源
intd[maxn];//最短距離
voidinit(intn){
this->n=n;
memset(E,255,sizeof(E));
len=0;
}
voidaddEdge(inta,intb,intval){
buf[len].init(b,val,E[a]);E[a]=len++;
}
voidsolve(ints){
staticpriority_queue<Tzvector<T>zgreater<T>>q;
while(!q.empty())q.pop();
memset(d,63,sizeof(d));
d[s]=0;
q.push(T(0,s));
intu,du,v,dv;
while(!q.empty()){
u=q.top().second;
du=q.top().first;
q-pop();
if(du!=d[u])continue;
for(inti=E[u];i!=-壹;i=buf[i].next){
v=buf[i].b;
dv=du+buf[i].val;
if(dv<d[v]){
d[v]=dv;
q.push(T(dvzv));
)
)
)
}
};
Dijkstradij;
structcmp{
booloperator()(constTT&a,constTT&b)const{
if(a.first+dij.d[a.second]==b.first+dij.d[b.second])
returna.first>b.first;
returna.first+dij.d[a.second]>b.first+dij.d[b.second];
}
);
structAStar{//Astar求解k短路
intE[maxn]rn;//圖
Nodbuf[maxm];intlen;//資源
intent[maxn];//記錄次數(shù)
8
voidinit(intn){
this->n=n;
memset(E,255,sizeof(E));
len=0;
dij.init(n);
}
voidaddEdge(inta,intb,intval){
buf[len].init(b,val,E[a]);E[a]=len++;
dij.addEdge(b,a,val);
)
/**
*注釋:
*壹.k=壹是最短路,以此類(lèi)推
*2.k短路和k-壹短路可能相同!
*3.沒(méi)有k短路返回-壹
*/
intsolve(ints,intt,intk){
if(s==t)k++;//假設(shè)兩個(gè)點(diǎn)合并在一起不算路??!
staticpriority_queue<TT,vector<TT>zcmp>q;
while(!q.empty())q.pop();
dij.solve(t);
if(dij.d[s]==inf)return-壹;//根本就沒(méi)有路!
intu,du,v,dv,mask;
memset(ent,0,sizeof(ent));
q.push(TT(0,s,4?s));//T.first是f(n),T.second是n
while(!q.empty()){
u=q.top().second;
du=q.top().first;
mask=q.top().mask;
q-pop();
ent[u]++;
//即當(dāng)前是到u點(diǎn)的ent[u]短路
if(t==u){//松弛最后一個(gè)點(diǎn)
printf("%d",du);〃打印答案
if(ent[t]==k)returndu;
continue;//最后一個(gè)點(diǎn)不許松弛其他點(diǎn)!
}
//if(ent[u]>k)continue;//大于k,我不在需要你了!【不要這句話?。?!】
for(inti=E[u];i!=-壹;i=buf[i].next){
v=buf[i].b;
dv=du+buf[i].val;
if(mask&(壹<<v))continue;
q.push(TT(dv,v,mask|(壹<<v)));//松弛伙伴!
)
)
return-壹;
)
}as;
//SOJ-327壹打印前k短路徑長(zhǎng)度
intmain(){
intn,s,t,tmp,MAX;
while(cin?n>>s?t>>MAX){
if(n>30)while(8);
as.init(n);
for(inti=0;i<n;i++){
9
for(intj=0;j<n;j++){
cin?tmp;
if(i!=j&&tmp!=MAX){
as.addEdge(i,j,tmp);
}
)
}
as?solve(s-壹,t-壹,n);
cout?endl;
)
return0;
}
K短路—無(wú)環(huán)_Yen
/**
*注意:
*壹.求【無(wú)環(huán)】【k短路徑】
*2.不能有【重邊】
★/
constintmaxn=30;
constintinf=0x3f3f3f3f;
typedefpair<intzint>T;
structNod{
intb,nxt,val;
voidinit(intb,intnxt,intval){
this->b=b;
this->nxt=nxt;
this->val=val;
)
);
structPath{
vector<int>node,block;
intlen;
//Theindexofthedeviationnode.Nodesbeforethisnodeareonthe
//kshortestpaths*tree.
intdev;
booloperator<(constPathsp)const{
returnlen>p.len;
)
);
structGraph{
intE[maxn],n;//圖
Nodbuf[maxn*maxn];intlen;//資源
voidinit(intn){
this->n=n;
memset(Ez255,sizeof(E));
len=0;
memset(edge,255,sizeof(edge));
)
voidaddEdge(inta,intb,intv){
edge[a][b]=len;
buf[len].init(b,E[a],v);E[a]=len++;
}
//GettheklooplessshortestpathswithYEN*salgorithm.
//Iftwopathshavethesamelength,theonewhosereversedpath
vector<Path>yenLoopless(intsource,intsink,intk){
vector<Path>res;
priority_queue<Path>q;//candidate
memset(block,0,sizeof(block));
initSingleSrc(source);
10
dijkstra();
if(d[sink]<inf){
Pathsh=shortestPath(sink);
sh.dev=壹;
sh.block.push_back(sh.node[sh.dev]);
q.push(sh);
)
while(res.size()<k&&!q.empty()){
Pathpath=q.top();q.pop();
for(intdev=path.dev;dev<path.node.size();dev++){
intpre=path.node[dev-壹];
if(dev==path.dev){
for(inti=0;i<path.block.size();i++){
block[pre][path.block[i]]=true;
)
}else{
block[pre][path.node[dev]]=true;
)
initSingleSrc(source);
delSubpath(path,dev);
dijkstra();
if(d[sink]<inf){
PathnewP=shortestPath(sink);
newP.dev=dev;
if(dev==path.dev){
newP.block=path.block;
}else{
newP.block.push_back(path.node[dev]);
)
newP.block.push_back(newP.node[dev]);
q.push(newP);
}
)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度創(chuàng)意園區(qū)個(gè)人租賃合同書(shū)3篇
- 2025年度農(nóng)產(chǎn)品自產(chǎn)自銷(xiāo)農(nóng)村電商扶貧合作合同3篇
- 2025年度汽車(chē)維修企業(yè)員工績(jī)效考核與激勵(lì)合同范本3篇
- 二零二五年度網(wǎng)絡(luò)紅人經(jīng)紀(jì)合作合同范本3篇
- 二零二五年度風(fēng)力發(fā)電工程質(zhì)保金合同規(guī)定2篇
- 2025年度公租房合同(含租戶信息保密條款)2篇
- 二零二五年度農(nóng)村墓地墓區(qū)照明系統(tǒng)設(shè)計(jì)與安裝協(xié)議
- 2025年度文化產(chǎn)業(yè)股權(quán)置換及合作協(xié)議書(shū)3篇
- 二零二五年度企業(yè)股份分割與股權(quán)激勵(lì)實(shí)施協(xié)議書(shū)2篇
- 二零二五年度消費(fèi)股東合作協(xié)議及創(chuàng)新業(yè)務(wù)拓展2篇
- 城市園林綠化養(yǎng)護(hù)管理標(biāo)準(zhǔn)規(guī)范
- 腳手架工程安全管理風(fēng)險(xiǎn)辨識(shí)及防范措施
- 廈門(mén)物業(yè)管理若干規(guī)定
- 2023年10月自考00055企業(yè)會(huì)計(jì)學(xué)真題及答案含評(píng)分標(biāo)準(zhǔn)
- 【語(yǔ)文】上海市三年級(jí)上冊(cè)期末復(fù)習(xí)試題(含答案)
- 遙感技術(shù)基礎(chǔ)第二版課后答案
- 八段錦操作評(píng)分標(biāo)準(zhǔn)
- 十六烷安全技術(shù)說(shuō)明書(shū)(msds)
- Stevens-Johnson綜合征及中毒性表皮壞死松解癥課件
- 醫(yī)療廢物處置流程圖3個(gè)
- 通信專業(yè)實(shí)務(wù):傳輸與接入(有線)
評(píng)論
0/150
提交評(píng)論