五年級上冊必考應(yīng)用題專項訓(xùn)練_第1頁
五年級上冊必考應(yīng)用題專項訓(xùn)練_第2頁
五年級上冊必考應(yīng)用題專項訓(xùn)練_第3頁
五年級上冊必考應(yīng)用題專項訓(xùn)練_第4頁
五年級上冊必考應(yīng)用題專項訓(xùn)練_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

五年級上冊必考應(yīng)用題專項訓(xùn)練一、和差問題【含義】已知兩個數(shù)量的和與差,求這兩個數(shù)量各是多少,這類應(yīng)用題叫和差問題?!緮?shù)量關(guān)系】大數(shù)=(和+差)÷2小數(shù)=(和-差)÷2【解題思路和方法】簡單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。例1甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?解甲班人數(shù)=(98+6)÷2=52(人)乙班人數(shù)=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。例2長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。解長=(18+2)÷2=10(厘米)寬=(18-2)÷2=8(厘米)長方形的面積=10×8=80(平方厘米)答:長方形的面積為80平方厘米。例3有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。解甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數(shù),丙是小數(shù)。由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?解“從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐”,這說明甲車是大數(shù),乙車是小數(shù),甲與乙的差是(14×2+3),甲與乙的和是97,因此甲車筐數(shù)=(97+14×2+3)÷2=64(筐)乙車筐數(shù)=97-64=33(筐)答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。和倍問題【含義】已知兩個數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個數(shù)各是多少,這類應(yīng)用題叫做和倍問題?!緮?shù)量關(guān)系】總和÷(幾倍+1)=較小的數(shù)總和-較小的數(shù)=較大的數(shù)較小的數(shù)×幾倍=較大的數(shù)【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1果園里有杏樹和桃樹共248棵,桃樹的棵數(shù)是杏樹的3倍,求杏樹、桃樹各多少棵?解(1)杏樹有多少棵?248÷(3+1)=62(棵)(2)桃樹有多少棵?62×3=186(棵)答:杏樹有62棵,桃樹有186棵。例2東西兩個倉庫共存糧480噸,東庫存糧數(shù)是西庫存糧數(shù)的1.4倍,求兩庫各存糧多少噸?解(1)西庫存糧數(shù)=480÷(1.4+1)=200(噸)(2)東庫存糧數(shù)=480-200=280(噸)答:東庫存糧280噸,西庫存糧200噸。例3甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天后乙站車輛數(shù)是甲站的2倍?解每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當(dāng)于每天從甲站開往乙站(28-24)輛。把幾天以后甲站的車輛數(shù)當(dāng)作1倍量,這時乙站的車輛數(shù)就是2倍量,兩站的車輛總數(shù)(52+32)就相當(dāng)于(2+1)倍,那么,幾天以后甲站的車輛數(shù)減少為(52+32)÷(2+1)=28(輛)所求天數(shù)為(52-28)÷(28-24)=6(天)答:6天以后乙站車輛數(shù)是甲站的2倍。例4甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?解乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。因為乙比甲的2倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;又因為丙比甲的3倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;這時(170+4-6)就相當(dāng)于(1+2+3)倍。那么,甲數(shù)=(170+4-6)÷(1+2+3)=28乙數(shù)=28×2-4=52丙數(shù)=28×3+6=90答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。三、差倍問題【含義】已知兩個數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個數(shù)各是多少,這類應(yīng)用題叫做差倍問題?!緮?shù)量關(guān)系】兩個數(shù)的差÷(幾倍-1)=較小的數(shù)較小的數(shù)×幾倍=較大的數(shù)【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1果園里桃樹的棵數(shù)是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?解(1)杏樹有多少棵?124÷(3-1)=62(棵)(2)桃樹有多少棵?62×3=186(棵)答:果園里杏樹是62棵,桃樹是186棵。例2爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?解(1)兒子年齡=27÷(4-1)=9(歲)(2)爸爸年齡=9×4=36(歲)答:父子二人今年的年齡分別是36歲和9歲。例3商場改革經(jīng)營管理辦法后,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?解如果把上月盈利作為1倍量,則(30-12)萬元就相當(dāng)于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(萬元)本月盈利=18+30=48(萬元)答:上月盈利是18萬元,本月盈利是48萬元。例4糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天后剩下的玉米是小麥的3倍?解由于每天運出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來的數(shù)量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相當(dāng)于(3-1)倍,因此剩下的小麥數(shù)量=(138-94)÷(3-1)=22(噸)運出的小麥數(shù)量=94-22=72(噸)運糧的天數(shù)=72÷9=8(天)答:8天以后剩下的玉米是小麥的3倍。四、倍比問題【含義】有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數(shù),再用倍比的方法算出要求的數(shù),這類應(yīng)用題叫做倍比問題。【數(shù)量關(guān)系】總量÷一個數(shù)量=倍數(shù)另一個數(shù)量×倍數(shù)=另一總量【解題思路和方法】先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。例1100千克油菜籽可以榨油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成綜合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。例2今年植樹節(jié)這天,某小學(xué)300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?解(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植樹多少棵?400×160=64000(棵)列成綜合算式400×(48000÷300)=64000(棵)答:全縣48000名師生共植樹64000棵。例3鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?解(1)800畝是4畝的幾倍?800÷4=200(倍)(2)800畝收入多少元?11111×200=2222200(元)(3)16000畝是800畝的幾倍?16000÷800=20(倍)(4)16000畝收入多少元?2222200×20=44444000(元)答:全鄉(xiāng)800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。五、相遇問題【含義】兩個運動的物體同時由兩地出發(fā)相向而行,在途中相遇。這類應(yīng)用題叫做相遇問題。【數(shù)量關(guān)系】相遇時間=總路程÷(甲速+乙速)總路程=(甲速+乙速)×相遇時間【解題思路和方法】簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。例1南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經(jīng)過幾小時兩船相遇?解392÷(28+21)=8(小時)答:經(jīng)過8小時兩船相遇。例2小李和小劉在周長為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點同時出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長時間?解“第二次相遇”可以理解為二人跑了兩圈。因此總路程為400×2相遇時間=(400×2)÷(5+3)=100(秒)答:二人從出發(fā)到第二次相遇需100秒時間。例3甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。解“兩人在距中點3千米處相遇”是正確理解本題題意的關(guān)鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,相遇時間=(3×2)÷(15-13)=3(小時)兩地距離=(15+13)×3=84(千米)答:兩地距離是84千米。六、追及問題【含義】兩個運動物體在不同地點同時出發(fā)(或者在同一地點而不是同時出發(fā),或者在不同地點又不是同時出發(fā))作同向運動,在后面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內(nèi),后面的追上前面的物體。這類應(yīng)用題就叫做追及問題?!緮?shù)量關(guān)系】追及時間=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及時間【解題思路和方法】簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?解(1)劣馬先走12天能走多少千米?75×12=900(千米)(2)好馬幾天追上劣馬?900÷(120-75)=20(天)列成綜合算式75×12÷(120-75)=900÷45=20(天)答:好馬20天能追上劣馬。例2小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的速度是每秒多少米。解小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。例3我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?解敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是[10×(22-16)]千米,甲乙兩地相距60千米。由此推知追及時間=[10×(22-16)+60]÷(30-10)=120÷20=6(小時)答:解放軍在6小時后可以追上敵人。例4一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。解這道題可以由相遇問題轉(zhuǎn)化為追及問題來解決。從題中可知客車落后于貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,這個時間為16×2÷(48-40)=4(小時)所以兩站間的距離為(48+40)×4=352(千米)列成綜合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙兩站的距離是352千米。例5兄妹二人同時由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門口時發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學(xué)校有多遠?解要求距離,速度已知,所以關(guān)鍵是求出相遇時間。從題中可知,在相同時間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(180×2)米,這是因為哥哥比妹妹每分鐘多走(90-60)米,那么,二人從家出走到相遇所用時間為180×2÷(90-60)=12(分鐘)家離學(xué)校的距離為90×12-180=900(米)答:家離學(xué)校有900米遠。例6孫亮打算上課前5分鐘到學(xué)校,他以每小時4千米的速度從家步行去學(xué)校,當(dāng)他走了1千米時,發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進,到學(xué)校恰好準時上課。后來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鐘到學(xué)校。求孫亮跑步的速度。解手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(10-5)分鐘,后段路程跑步恰準時到學(xué)校,說明后段路程跑比走少用了(10-5)分鐘。如果從家一開始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用[9-(10-5)]分鐘。所以步行1千米所用時間為1÷[9-(10-5)]=0.25(小時)=15(分鐘)跑步1千米所用時間為15-[9-(10-5)]=11(分鐘)跑步速度為每小時1÷11/60=5.5(千米)答:孫亮跑步速度為每小時5.5千米。七、植樹問題【含義】按相等的距離植樹,在距離、棵距、棵數(shù)這三個量之間,已知其中的兩個量,要求第三個量,這類應(yīng)用題叫做植樹問題?!緮?shù)量關(guān)系】線形植樹棵數(shù)=距離÷棵距+1環(huán)形植樹棵數(shù)=距離÷棵距方形植樹棵數(shù)=距離÷棵距-4三角形植樹棵數(shù)=距離÷棵距-3面積植樹棵數(shù)=面積÷(棵距×行距)【解題思路和方法】先弄清楚植樹問題的類型,然后可以利用公式。例1一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。例2一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?解400÷4=100(棵)答:一共能栽100棵白楊樹。例3一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?解220×4÷8-4=110-4=106(個)答:一共可以安裝106個照明燈。例4給一個面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?解96÷(0.6×0.4)=96÷0.24=400(塊)答:至少需要400塊地板磚。例5一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?解(1)橋的一邊有多少個電桿?500÷50+1=11(個)(2)橋的兩邊有多少個電桿?11×2=22(個)(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)答:大橋兩邊一共可以安裝44盞路燈。八、行船問題【含義】行船問題也就是與航行有關(guān)的問題。解答這類問題要弄清船速與水速,船速是船只本身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順水航行的速度是船速與水速之和;船只逆水航行的速度是船速與水速之差?!緮?shù)量關(guān)系】(順水速度+逆水速度)÷2=船速(順水速度-逆水速度)÷2=水速順水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-順水速=順水速-水速×2【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1一只船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?解由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時320÷8-15=25(千米)船的逆水速為25-15=10(千米)船逆水行這段路程的時間為320÷10=32(小時)答:這只船逆水行這段路程需用32小時。例2甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?解由題意得甲船速+水速=360÷10=36甲船速-水速=360÷18=20可見(36-20)相當(dāng)于水速的2倍,所以,水速為每小時(36-20)÷2=8(千米)又因為,乙船速-水速=360÷15,所以,乙船速為360÷15+8=32(千米)乙船順水速為32+8=40(千米)所以,乙船順水航行360千米需要360÷40=9(小時)答:乙船返回原地需要9小時。例3一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風(fēng)速為每小時24千米,飛機逆風(fēng)飛行3小時到達,順風(fēng)飛回需要幾小時?解這道題可以按照流水問題來解答。(1)兩城相距多少千米?(576-24)×3=1656(千米)(2)順風(fēng)飛回需要多少小時?1656÷(576+24)=2.76(小時)列成綜合算式[(576-24)×3]÷(576+24)=2.76(小時)答:飛機順風(fēng)飛回需要2.76小時。九、列車問題【含義】這是與列車行駛有關(guān)的一些問題,解答時要注意列車車身的長度。【數(shù)量關(guān)系】火車過橋:過橋時間=(車長+橋長)÷車速火車追及:追及時間=(甲車長+乙車長+距離)÷(甲車速-乙車速)火車相遇:相遇時間=(甲車長+乙車長+距離)÷(甲車速+乙車速)【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?解火車3分鐘所行的路程,就是橋長與火車車身長度的和。(1)火車3分鐘行多少米?900×3=2700(米)(2)這列火車長多少米?2700-2400=300(米)列成綜合算式900×3-2400=300(米)答:這列火車長300米。例2一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時間,求大橋的長度是多少米?解火車過橋所用的時間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為8×125-200=800(米)答:大橋的長度是800米。例3一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時間?解從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時間為(225+140)÷(22-17)=73(秒)答:需要73秒。例4一列長150米的列車以每秒22米的速度行駛,有一個扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時間?解如果把人看作一列長度為零的火車,原題就相當(dāng)于火車相遇問題。150÷(22+3)=6(秒)答:火車從工人身旁駛過需要6秒鐘。例5一列火車穿越一條長2000米的隧道用了88秒,以同樣的速度通過一條長1250米的大橋用了58秒。求這列火車的車速和車身長度各是多少?解車速和車長都沒有變,但通過隧道和大橋所用的時間不同,是因為隧道比大橋長??芍疖囋冢?8-58)秒的時間內(nèi)行駛了(2000-1250)米的路程,因此,火車的車速為每秒(2000-1250)÷(88-58)=25(米)進而可知,車長和橋長的和為(25×58)米,因此,車長為25×58-1250=200(米)答:這列火車的車速是每秒25米,車身長200米。十、盈虧問題【含義】根據(jù)一定的人數(shù),分配一定的物品,在兩次分配中,一次有余(盈),一次不足(虧),或兩次都有余,或兩次都不足,求人數(shù)或物品數(shù),這類應(yīng)用題叫做盈虧問題。【數(shù)量關(guān)系】一般地說,在兩次分配中,如果一次盈,一次虧,則有:參加分配總?cè)藬?shù)=(盈+虧)÷分配差如果兩次都盈或都虧,則有:參加分配總?cè)藬?shù)=(大盈-小盈)÷分配差參加分配總?cè)藬?shù)=(大虧-小虧)÷分配差【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1給幼兒園小朋友分蘋果,若每人分3個就余11個;若每人分4個就少1個。問有多少小朋友?有多少個蘋果?解按照“參加分配的總?cè)藬?shù)=(盈+虧)÷分配差”的數(shù)量關(guān)系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少個蘋果?3×12+11=47(個)答:有小朋友12人,有47個蘋果。例2修一條公路,如果每天修260米,修完全長就得延長8天;如果每天修300米,修完全長仍得延長4天。這條路全長多少米?解題中原定完成任務(wù)的天數(shù),就相當(dāng)于“參加分配的總?cè)藬?shù)”,按照“參加分配的總?cè)藬?shù)=(大虧-小虧)÷分配差”的數(shù)量關(guān)系,可以得知原定完成任務(wù)的天數(shù)為(260×8-300×4)÷(300-260)=22(天)這條路全長為300×(22+4)=7800(米)答:這條路全長7800米。例3學(xué)校組織春游,如果每輛車坐40人,就余下30人;如果每輛車坐45人,就剛好坐完。問有多少車?多少人?解本題中的車輛數(shù)就相當(dāng)于“參加分配的總?cè)藬?shù)”,于是就有(1)有多少車?(30-0)÷(45-40)=6(輛)(2)有多少人?40×6+30=270(人)答:有6輛車,有270人。十一、工程問題【含義】工程問題主要研究工作量、工作效率和工作時間三者之間的關(guān)系。這類問題在已知條件中,常常不給出工作量的具體數(shù)量,只提出“一項工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時,常常用單位“1”表示工作總量?!緮?shù)量關(guān)系】解答工程問題的關(guān)鍵是把工作總量看作“1”,這樣,工作效率就是工作時間的倒數(shù)(它表示單位時間內(nèi)完成工作總量的幾分之幾),進而就可以根據(jù)工作量、工作效率、工作時間三者之間的關(guān)系列出算式。工作量=工作效率×工作時間工作時間=工作量÷工作效率工作時間=總工作量÷(甲工作效率+乙工作效率)【解題思路和方法】變通后可以利用上述數(shù)量關(guān)系的公式。例1一項工程,甲隊單獨做需要10天完成,乙隊單獨做需要15天完成,現(xiàn)在兩隊合作,需要幾天完成?解題中的“一項工程”是工作總量,由于沒有給出這項工程的具體數(shù)量,因此,把此項工程看作單位“1”。由于甲隊獨做需10天完成,那么每天完成這項工程的1/10;乙隊單獨做需15天完成,每天完成這項工程的1/15;兩隊合做,每天可以完成這項工程的(1/10+1/15)。由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)答:兩隊合做需要6天完成。例2一批零件,甲獨做6小時完成,乙獨做8小時完成。現(xiàn)在兩人合做,完成任務(wù)時甲比乙多做24個,求這批零件共有多少個?解設(shè)總工作量為1,則甲每小時完成1/6,乙每小時完成1/8,甲比乙每小時多完成(1/6-1/8),二人合做時每小時完成(1/6+1/8)。因為二人合做需要[1÷(1/6+1/8)]小時,這個時間內(nèi),甲比乙多做24個零件,所以(1)每小時甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(個)(2)這批零件共有多少個?7÷(1/6-1/8)=168(個)答:這批零件共有168個。解二上面這道題還可以用另一種方法計算:兩人合做,完成任務(wù)時甲乙的工作量之比為1/6∶1/8=4∶3由此可知,甲比乙多完成總工作量的4-3/4+3=1/7所以,這批零件共有24÷1/7=168(個)例3一件工作,甲獨做12小時完成,乙獨做10小時完成,丙獨做15小時完成?,F(xiàn)在甲先做2小時,余下的由乙丙二人合做,還需幾小時才能完成?解必須先求出各人每小時的工作效率。如果能把效率用整數(shù)表示,就會給計算帶來方便,因此,我們設(shè)總工作量為12、10、和15的某一公倍數(shù),例如最小公倍數(shù)60,則甲乙丙三人的工作效率分別是60÷12=560÷10=660÷15=4因此余下的工作量由乙丙合做還需要(60-5×2)÷(6+4)=5(小時)答:還需要5小時才能完成。也可以用(1-1/12*2)/(1/10+1/15)例4一個水池,底部裝有一個常開的排水管,上部裝有若干個同樣粗細的進水管。當(dāng)打開4個進水管時,需要5小時才能注滿水池;當(dāng)打開2個進水管時,需要15小時才能注滿水池;現(xiàn)在要用2小時將水池注滿,至少要打開多少個進水管?解注(排)水問題是一類特殊的工程問題。往水池注水或從水池排水相當(dāng)于一項工程,水的流量就是工作量,單位時間內(nèi)水的流量就是工作效率。要2小時內(nèi)將水池注滿,即要使2小時內(nèi)的進水量與排水量之差剛好是一池水。為此需要知道進水管、排水管的工作效率及總工作量(一池水)。只要設(shè)某一個量為單位1,其余兩個量便可由條件推出。我們設(shè)每個同樣的進水管每小時注水量為1,則4個進水管5小時注水量為(1×4×5),2個進水管15小時注水量為(1×2×15),從而可知每小時的排水量為(1×2×15-1×4×5)÷(15-5)=1即一個排水管與每個進水管的工作效率相同。由此可知一池水的總工作量為1×4×5-1×5=15又因為在2小時內(nèi),每個進水管的注水量為1×2,所以,2小時內(nèi)注滿一池水至少需要多少個進水管?(15+1×2)÷(1×2)=8.5≈9(個)答:至少需要9個進水管。29最值問題【含義】科學(xué)的發(fā)展觀認為,國民經(jīng)濟的發(fā)展既要講求效率,又要節(jié)約能源,要少花錢多辦事,辦好事,以最小的代價取得最大的效益。這類應(yīng)用題叫做最值問題。【數(shù)量關(guān)系】一般是求最大值或最小值。【解題思路和方法】按照題目的要求,求出最大值或最小值。例1在火爐上烤餅,餅的兩面都要烤,每烤一面需要3分鐘,爐上只能同時放兩塊餅,現(xiàn)在需要烤三塊餅,最少需要多少分鐘?解先將兩塊餅同時放上烤,3分鐘后都熟了一面,這時將第一塊餅取出,放入第三塊餅,翻過第二塊餅。再過3分鐘取出熟了的第二塊餅,翻過第三塊餅,又放入第一塊餅烤另一面,再烤3分鐘即可。這樣做,用的時間最少,為9分鐘。答:最少需要9分鐘。例2在一條公路上有五個卸煤場,每相鄰兩個之間的距離都是10千米,已知1號煤場存煤100噸,2號煤場存煤200噸,5號煤場存煤400噸,其余兩個煤場是空的。現(xiàn)在要把所有的煤集中到一個煤場里,每噸煤運1千米花費1元,集中到幾號煤場花費最少?解我們采用嘗試比較的方法來解答。集中到1號場總費用為1×200×10+1×400×40=18000(元)集中到2號場總費用為1×100×10+1×400×30=13000(元)集中到3號場總費用為1×100×20+1×200×10+1×400×10=12000(元)集中到4號場總費用為1×100×30+1×200×20+1×400×10=11000(元)集中到5號場總費用為1×100×40+1×200×30=10000(元)經(jīng)過比較,顯然,集中到5號煤場費用最少。答:集中到5號煤場費用最少。

重慶武漢北京800400上海500300例3北京和上海同時制成計算機若干臺,北京可調(diào)運外地10臺,上海可調(diào)運外地4臺?,F(xiàn)決定給重慶調(diào)運8臺,給武漢調(diào)運6臺,若每臺運費如右表,問如何調(diào)運才使運費最省?解北京調(diào)運到重慶的運費最高,因此,北京往重慶應(yīng)盡量少調(diào)運。這樣,把上海的4臺全都調(diào)往重慶,再從北京調(diào)往重慶4臺,調(diào)往武漢6臺,運費就會最少,其數(shù)額為500×4+800×4+400×6=7600(元)答:上海調(diào)往重慶4臺,北京調(diào)往武漢6臺,調(diào)往重慶4臺,這樣運費最少。30列方程問題【含義】把應(yīng)用題中的未知數(shù)用字母Χ代替,根據(jù)等量關(guān)系列出含有未知數(shù)的等式——方程,通過解這個方程而得到應(yīng)用題的答案,這個過程,就叫做列方程解應(yīng)用題。【數(shù)量關(guān)系】方程的等號兩邊數(shù)量相等?!窘忸}思路和方法】可以概括為“審、設(shè)、列、解、驗、答”六字法。(1)審:認真審題,弄清應(yīng)用題中的已知量和未知量各是什么,問題中的等量關(guān)系是什么。(2)設(shè):把應(yīng)用題中的未知數(shù)設(shè)為Χ。(3)列;根據(jù)所設(shè)的未知數(shù)和題目中的已

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論