版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省上高縣第二中學(xué)2023-2024學(xué)年數(shù)學(xué)高一下期末檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,某人在點(diǎn)處測(cè)得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進(jìn)30米到達(dá)處,測(cè)得塔頂?shù)难鼋菫?,則塔高為()A.20米 B.15米 C.12米 D.10米2.已知非零向量,滿足,且,則與的夾角為
A. B. C. D.3.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且,則的最大值為()A. B.1 C. D.4.在中,角的對(duì)邊分別為,已知,則的大小是()A. B. C. D.5.已知函數(shù),函數(shù)的最小值等于()A. B. C.5 D.96.將一邊長(zhǎng)為2的正方形沿對(duì)角線折起,若頂點(diǎn)落在同一個(gè)球面上,則該球的表面積為()A. B. C. D.7.直線l:的傾斜角為()A. B. C. D.8.一個(gè)人連續(xù)射擊三次,則事件“至少擊中兩次”的對(duì)立事件是()A.恰有一次擊中 B.三次都沒(méi)擊中C.三次都擊中 D.至多擊中一次9.已知分別是的內(nèi)角的的對(duì)邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形10.已知等差數(shù)列的前項(xiàng)和為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為虛數(shù)單位,復(fù)數(shù)的模為_(kāi)_____.12.據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng),臺(tái)風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_(kāi)______小時(shí).13.程的解為_(kāi)_____.14.已知數(shù)列中,,,設(shè),若對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍是______.15.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.16.已知扇形的面積為,圓心角為,則該扇形半徑為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.單調(diào)遞增的等差數(shù)列滿足,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.已知,,且(1)求函數(shù)的解析式;(2)當(dāng)時(shí),的最小值是,求此時(shí)函數(shù)的最大值,并求出函數(shù)取得最大值時(shí)自變量的值19.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國(guó)水周”.我國(guó)紀(jì)念年“世界水日”和“中國(guó)水周”活動(dòng)的宣傳主題為“堅(jiān)持節(jié)水優(yōu)先,強(qiáng)化水資源管理”.某中學(xué)課題小組抽取、兩個(gè)小區(qū)各戶家庭,記錄他們?cè)路莸挠盟浚▎挝唬海┤缦卤恚盒^(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個(gè)小區(qū)居民節(jié)水意識(shí)更好?(2)從用水量不少于的家庭中,、兩個(gè)小區(qū)各隨機(jī)抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.20.某學(xué)校高一年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制.各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表.規(guī)定:三級(jí)為合格等級(jí),D為不合格等級(jí).為了解該校高一年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.(I)求和頻率分布直方圖中的的值,并估計(jì)該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;(II)在選取的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是等級(jí)的概率.21.已知向量,,且.(1)求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
設(shè)塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設(shè)塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點(diǎn)睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù)題意,建立與的關(guān)系,即可得到夾角.【詳解】因?yàn)?,所以,則,則,所以,所以?shī)A角為故選B.【點(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,難度較小.3、D【解析】
根據(jù)正弦定理將已知等式化簡(jiǎn)得,再根據(jù)差角正切公式以及基本不等式可得結(jié)論.【詳解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,當(dāng)且僅當(dāng),即時(shí)取等號(hào).故選:D.【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.4、C【解析】∵,∴,又,∴,又為三角形的內(nèi)角,所以,故。選C。5、C【解析】
先將化為,由基本不等式即可求出最小值.【詳解】因?yàn)?,?dāng)且僅當(dāng),即時(shí),取等號(hào).故選C【點(diǎn)睛】本題主要考查利用基本不等式求函數(shù)的最值問(wèn)題,需要先將函數(shù)化為能用基本不等式的形式,即可利用基本不等式求解,屬于基礎(chǔ)題型.6、D【解析】
令正方形對(duì)角線與的交點(diǎn)為,如圖所示:由正方形中,,則,那么,將正方形沿對(duì)角線折起,如圖所示:則點(diǎn)為三棱錐的外接球的球心,且半徑為,故外接球的表面積為.故選:D【點(diǎn)睛】本題考查了多面體的外接球問(wèn)題以及球的表面積公式,屬于基礎(chǔ)題.7、C【解析】
由直線的斜率,又,再求解即可.【詳解】解:由直線l:,則直線的斜率,又,所以,即直線l:的傾斜角為,故選:C.【點(diǎn)睛】本題考查了直線傾斜角的求法,屬基礎(chǔ)題.8、D【解析】
根據(jù)判斷的原則:“至少有個(gè)”的對(duì)立是“至多有個(gè)”.【詳解】根據(jù)判斷的原則:“至少擊中兩次”的對(duì)立事件是“至多擊中一次”,故選D.【點(diǎn)睛】至多至少的對(duì)立事件問(wèn)題,可以采用集合的補(bǔ)集思想進(jìn)行轉(zhuǎn)化.如“至少有個(gè)”則對(duì)應(yīng)“”,其補(bǔ)集應(yīng)為“”.9、A【解析】
由已知結(jié)合正弦定理可得利用三角形的內(nèi)角和及誘導(dǎo)公式可得,整理可得從而有結(jié)合三角形的性質(zhì)可求【詳解】解:是的一個(gè)內(nèi)角,,由正弦定理可得,又,,即為鈍角,故選A.【點(diǎn)睛】本題主要考查了正弦定理,三角形的內(nèi)角和及誘導(dǎo)公式,兩角和的正弦公式,屬于基礎(chǔ)試題.10、C【解析】
利用等差數(shù)列的求和公式及性質(zhì)即可得到答案.【詳解】由于,根據(jù)等差數(shù)列的性質(zhì),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),然后代入復(fù)數(shù)模的公式,即可求得答案.【詳解】由題意,復(fù)數(shù),則復(fù)數(shù)的模為.故答案為5【點(diǎn)睛】本題主要考查了復(fù)數(shù)的乘法運(yùn)算,以及復(fù)數(shù)模的計(jì)算,其中熟記復(fù)數(shù)的運(yùn)算法則,和復(fù)數(shù)模的公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、1【解析】
設(shè)臺(tái)風(fēng)移動(dòng)M處的時(shí)間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺(tái)風(fēng)侵襲等價(jià)于AM≤60,解此不等式可得.【詳解】如圖:設(shè)臺(tái)風(fēng)移動(dòng)M處的時(shí)間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺(tái)風(fēng)侵襲等價(jià)于AM≤60,即AM2≤602,化簡(jiǎn)得:,所以該城市受臺(tái)風(fēng)侵襲的時(shí)間為6﹣1=1小時(shí).故答案為:1.【點(diǎn)睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.13、【解析】
設(shè),即求二次方程的正實(shí)數(shù)根,即可解決問(wèn)題.【詳解】設(shè),即轉(zhuǎn)化為求方程的正實(shí)數(shù)根由得或(舍)所以,則故答案為:【點(diǎn)睛】本題考查指數(shù)型二次方程,考查換元法,屬于基礎(chǔ)題.14、【解析】∵,(,),當(dāng)時(shí),,,…,,并項(xiàng)相加,得:,
∴,又∵當(dāng)時(shí),也滿足上式,
∴數(shù)列的通項(xiàng)公式為,∴
,令(),則,∵當(dāng)時(shí),恒成立,∴在上是增函數(shù),
故當(dāng)時(shí),,即當(dāng)時(shí),,對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,則須使,即對(duì)恒成立,即的最小值,可得,∴實(shí)數(shù)的取值范圍為,故答案為.點(diǎn)睛:本題考查數(shù)列的通項(xiàng)及前項(xiàng)和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題通過(guò)并項(xiàng)相加可知當(dāng)時(shí),進(jìn)而可得數(shù)列的通項(xiàng)公式,裂項(xiàng)、并項(xiàng)相加可知,通過(guò)求導(dǎo)可知是增函數(shù),進(jìn)而問(wèn)題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.15、【解析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計(jì)算出圓錐的母線長(zhǎng),代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長(zhǎng),則圓錐側(cè)面積公式,故答案為.點(diǎn)睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對(duì)基本公式的掌握與理解,屬于簡(jiǎn)單題.16、2【解析】
將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點(diǎn)睛】本題考查了扇形的面積公式,屬于簡(jiǎn)單題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)設(shè)等差數(shù)列的公差為,,運(yùn)用等差數(shù)列的通項(xiàng)公式和等比數(shù)列中項(xiàng)性質(zhì),解方程可得公差,進(jìn)而得到所求通項(xiàng)公式;(2)求得,再用裂項(xiàng)相消法即可得出結(jié)論.【詳解】解:(1)設(shè)等差數(shù)列的公差為,,可得,,由,,成等比數(shù)列,,解得或舍去),則;(2),∴.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式和等比數(shù)列中項(xiàng)性質(zhì),考查數(shù)列的裂項(xiàng)相消法求和,考查運(yùn)算能力,屬于中檔題.18、(1)(2)【解析】試題分析:(1)由向量的數(shù)量積運(yùn)算代入點(diǎn)的坐標(biāo)得到三角函數(shù)式,運(yùn)用三角函數(shù)基本公式化簡(jiǎn)為的形式;(2)由定義域可得到的范圍,結(jié)合函數(shù)單調(diào)性求得函數(shù)最值及對(duì)應(yīng)的自變量值試題解析:(1)即(2)由,,,,,此時(shí),考點(diǎn):1.向量的數(shù)量積運(yùn)算;2.三角函數(shù)化簡(jiǎn)及三角函數(shù)性質(zhì)19、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個(gè)小區(qū)居民節(jié)水意識(shí);(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用古典概型的概率公式可計(jì)算出事件“小區(qū)家庭的用水量低于小區(qū)”的概率.【詳解】(1)繪制如下莖葉圖:由以上莖葉圖可以看出,小區(qū)月用水量有的葉集中在莖、上,而小區(qū)月用水量有的葉集中在莖、上,由此可看出小區(qū)居民節(jié)水意識(shí)更好;(2)從用水量不少于的家庭中,、兩個(gè)小區(qū)各隨機(jī)抽取一戶的結(jié)果:、、、、、、、,共個(gè)基本事件,小區(qū)家庭的用水量低于小區(qū)的的結(jié)果:、、,共個(gè)基本事件.所以,小區(qū)家庭的用水量低于小區(qū)的概率是.【點(diǎn)睛】本題考查莖葉圖的繪制與應(yīng)用,以及利用古典概型計(jì)算事件的概率,考查收集數(shù)據(jù)與處理數(shù)據(jù)的能力,考查計(jì)算能力,屬于中等題.20、(I),;(II).【解析】試題分析:(I)根據(jù)頻率直方圖的相關(guān)概率易求,依據(jù)樣本估計(jì)總體的思想可得該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;(II)記“至少有一名學(xué)生是等級(jí)”事件為,求事件對(duì)立事件的的概率,可得.試題解析:(I)由題意可知,樣本容量因?yàn)槌煽?jī)是合格等級(jí)人數(shù)為:人,抽取的50人中成績(jī)是合格等級(jí)的頻率為,依據(jù)樣本估計(jì)總體的思想,所以,該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率為(II)由莖葉圖知,等級(jí)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 珠寶服務(wù)采購(gòu)合同范例
- 手工承包合同范例
- 破碎瓶蓋出售合同范例
- 管網(wǎng)工程居間合同范例
- 外墻保溫轉(zhuǎn)讓合同范例
- 花卉盆栽配送合同范例
- 與政府租地合同范例
- x小產(chǎn)權(quán)購(gòu)房合同范例
- 網(wǎng)吧投資合同范例
- 保險(xiǎn)公司車輛合同范例
- 高中二年級(jí)上學(xué)期數(shù)學(xué)《拋物線的簡(jiǎn)單幾何性質(zhì)(二)》教學(xué)課件
- 2023年小學(xué)二年級(jí)數(shù)學(xué)競(jìng)賽試題(后附答案)
- 2024華北水利水電工程集團(tuán)招聘20人歷年(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 《數(shù)據(jù)可視化 》 課件全套 楊華 第1-9章 數(shù)據(jù)可視化概述- 可視化大屏
- 四色安全風(fēng)險(xiǎn)空間分布圖設(shè)計(jì)原則和要求
- GB/T 44146-2024基于InSAR技術(shù)的地殼形變監(jiān)測(cè)規(guī)范
- 齊魯工業(yè)大學(xué)《中國(guó)近現(xiàn)代史綱要》2019-2020學(xué)年期末試卷
- 醫(yī)療質(zhì)量管理手冊(cè)
- 工程測(cè)量基礎(chǔ)智慧樹(shù)知到期末考試答案章節(jié)答案2024年青島濱海學(xué)院
- 【《青島海爾公司應(yīng)收賬款管理問(wèn)題及對(duì)策研究》10000字】
- 民族特色操舞智慧樹(shù)知到期末考試答案章節(jié)答案2024年保山學(xué)院
評(píng)論
0/150
提交評(píng)論