版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省溫州市環(huán)大羅山聯(lián)盟高一下數(shù)學期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,三個頂點分別為A(2,4),B(﹣1,2),C(1,0),點P(x,y)在△ABC的內部及其邊界上運動,則y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.32.已知正項數(shù)列,若點在函數(shù)的圖像上,則()A.12 B.13 C.14 D.163.如圖,三棱柱中,側棱底面ABC,,,,則異面直線與所成角的余弦值為()A. B. C. D.4.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④5.已知的三個內角所對的邊為,面積為,且,則等于()A. B. C. D.6.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.87.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是()A. B. C. D.8.設函數(shù)(為常實數(shù))在區(qū)間上的最小值為,則的值等于()A.4 B.-6 C.-3 D.-49.在中,a,b,c分別為角A,B,C的對邊,若,,,則解的個數(shù)是()A.0 B.1 C.2 D.不確定10.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.兩圓交于點和,兩圓的圓心都在直線上,則____________;12.已知,是平面內兩個互相垂直的單位向量,若向量滿足,則的最大值是.13.己知函數(shù),,則的值為______.14.某學校高一年級舉行選課培訓活動,共有1024名學生、家長、老師參加,其中家長256人.學校按學生、家長、老師分層抽樣,從中抽取64人,進行某問卷調查,則抽到的家長有___人15.已知向量,則的單位向量的坐標為_______.16.等差數(shù)列的前項和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前15項和.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,,,等比數(shù)列中,,.(1)求數(shù)列,的通項公式;(2)若,求數(shù)列的前n項和.18.(1)已知,且為第三象限角,求的值(2)已知,計算的值.19.如圖,在平面四邊形中,,,,,.(1)求的長;(2)求的長.20.如圖所示,在直三棱柱中,,平面,D為AC的中點.(1)求證:平面;(2)求證:平面;(3)設E是上一點,試確定E的位置使平面平面BDE,并說明理由.21.已知函數(shù),其中.解關于x的不等式;求a的取值范圍,使在區(qū)間上是單調減函數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)線性規(guī)劃的知識求解.【詳解】根據(jù)線性規(guī)劃知識,的最小值一定在的三頂點中的某一個處取得,分別代入的坐標可得的最小值是.故選B.【點睛】本題考查簡單的線性規(guī)劃問題,屬于基礎題.2、A【解析】
由已知點在函數(shù)圖象上求出通項公式,得,由對數(shù)的定義計算.【詳解】由題意,,∴,∴.故選:A.【點睛】本題考查數(shù)列的通項公式,考查對數(shù)的運算.屬于基礎題.3、A【解析】
以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知求與的坐標,由兩向量所成角的余弦值求解異面直線與所成角的余弦值.【詳解】如圖,以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知得:,,所以,.設異面直線與所成角,則故異面直線與所成角的余弦值為.故選:A【點睛】本題主要考查了利用空間向量求解線線角的問題,屬于基礎題.4、D【解析】
根據(jù)基本不等式、不等式的性質即可【詳解】對于①,.當,即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質,基本不等式一定要滿足一正二定三相等。屬于中等題。5、C【解析】
利用三角形面積公式可得,結合正弦定理及三角恒等變換知識可得,從而得到角A.【詳解】∵∴即∴∴∴,∴(舍)∴故選C【點睛】此題考查了正弦定理、三角形面積公式,以及三角恒等變換,熟練掌握邊角的轉化是解本題的關鍵.6、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關系的轉化.7、D【解析】
先求出AB的長,再求點P到直線AB的最小距離和最大距離,即得△ABP面積的最小值和最大值,即得解.【詳解】由題得,由題得圓心到直線AB的距離為,所以點P到直線AB的最小距離為2-1=1,最大距離為2+1=3,所以△ABP的面積的最小值為,最大值為.所以△ABP的面積的取值范圍為[1,3].故選D【點睛】本題主要考查點到直線的距離的計算,考查面積的最值問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.8、D【解析】試題分析:,,,當時,,故.考點:1、三角恒等變換;2、三角函數(shù)的性質.9、B【解析】
由題得,即得B<A,即得三角形只有一個解.【詳解】由正弦定理得,所以B只有一解,所以三角形只有一解.故選:B【點睛】本題主要考查正弦定理判定三角形的個數(shù),意在考查學生對這些知識的理解掌握水平,屬于基礎題.10、A【解析】
作出兩異面直線所成的角,然后由余弦定理求解.【詳解】在正四棱柱中,則異面直線與所成角為或其補角,在中,,,.故選A.【點睛】本題考查異面直線所成的角,解題關鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圓的性質可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【點睛】本題考查了相交圓的幾何性質,和直線垂直的關系,考查數(shù)形結合的思想與計算能力,屬于基礎題.12、【解析】
,,是平面內兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內兩個相互垂直的單位向量∴,即,所以當時,即與共線時,取得最大值為,故答案為.13、1【解析】
將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.14、16【解析】
利用分層抽樣的性質,直接計算,即可求得,得到答案.【詳解】由題意,可知共有1024名學生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進行某問卷調查,則抽到的家長人數(shù)為人.故答案為16【點睛】本題主要考查了分層抽樣的應用,其中解答中熟記分層抽樣的概念和性質,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、.【解析】
由結論“與方向相同的單位向量為”可求出的坐標.【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標的計算,考查共線向量的坐標運算,充分利用共線單位向量的結論可簡化計算,考查運算求解能力,屬于基礎題.16、(1),;(2)125.【解析】
(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項為正,后面為負,再計算數(shù)列的前15項和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點睛】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負分界處是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)根據(jù)等差數(shù)列的通項公式求出首項,公差和等比數(shù)列的通項公式求出首項,公比即可.
(2)由用錯位相減法求和.【詳解】(1)在等差數(shù)列中,設首項為,公差為.由,有,解得:所以又設的公比為,由,,得所以.(2)…………………①……………②由①-②得所以【點睛】本題考查求等差、等比數(shù)列的通項公式和用錯位相減法求和,屬于中檔題.18、(1);(2)【解析】
(1)由,結合為第三象限角,即可得解;(2)由,代入求解即可.【詳解】(1),∴,又∵是第三象限.∴(2).【點睛】本題主要考查了同角三角函數(shù)的基本關系,屬于基礎題.19、(1);(2)【解析】
(1)在中,先得到再利用正弦定理得到.(2)在中,計算,由余弦定理得到,再用余弦定理得到.【詳解】(1)在中,,則,又由正弦定理,得(2)在中,,則,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【點睛】本題考查了正弦定理和余弦定理,意在考查學生利用正余弦定理解決問題的能力.20、(1)證明見詳解,(2)證明見詳解,(3)當為的中點時,平面平面BDE,證明見詳解【解析】
(1)連接與相交于,可得,結合線面平行的判定定理即可證明平面(2)先證明和即可得出平面,然后可得,又,即可證明平面(3)當為的中點時,平面平面BDE,由已知易得,結合平面可得平面,進而根據(jù)面面垂直的判定定理得到結論.【詳解】(1)如圖,連接與相交于,則為的中點連接,又為的中點所以,又平面,平面所以平面(2)因為,所以四邊形為正方形所以又因為平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)當為的中點時,平面平面BDE因為分別是的中點所以,因為平面所以平面,又平面所以平面平面BDE【點睛】本題考查的是立體幾何中線面平行和垂直的證明,要求我們要熟悉并掌握平行與垂直有關的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高端樂器租賃與維護保養(yǎng)合作協(xié)議
- 2025年度電子產品品牌授權使用代理合同2篇
- 2025年度城市軌道交通工程補充協(xié)議-施工期限調整范本3篇
- 文化藝術創(chuàng)作與推廣作業(yè)指導書
- 玉柴職業(yè)技術學院《綠色和有機食品生產技術》2023-2024學年第一學期期末試卷
- 永州職業(yè)技術學院《交互媒體設計》2023-2024學年第一學期期末試卷
- 義烏工商職業(yè)技術學院《審計綜合模擬實訓》2023-2024學年第一學期期末試卷
- 益陽職業(yè)技術學院《綜合材料技法》2023-2024學年第一學期期末試卷
- 風景名勝區(qū)網(wǎng)點租賃合同3篇
- 高端寫字樓場地合作合同3篇
- 水性建筑涂料企業(yè)風險點告知卡
- 2023上海四年級第一學期期末考試數(shù)學試卷
- 天津市中小學生思想品德發(fā)展水平評價指標(小學中高年級學段)
- 蘇教版數(shù)學四年級下冊知識點總結
- 慢病管理服務電話回訪話術
- 第8章:一維桿件系統(tǒng)的振動
- GB/T 1741-2020漆膜耐霉菌性測定法
- 煙花爆竹作業(yè)安全技術規(guī)程
- 2023年云南省普通高中學業(yè)水平考試歷史試卷附答案
- 400V開關柜操作及維護手冊(雙語)
- 《數(shù)學文化》課程教學大綱
評論
0/150
提交評論