2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第1頁(yè)
2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第2頁(yè)
2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第3頁(yè)
2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第4頁(yè)
2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖南省各地高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}2.已知等差數(shù)列中,若,則()A.1 B.2 C.3 D.43.底面是正方形,從頂點(diǎn)向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長(zhǎng)為1.側(cè)棱長(zhǎng)為2,E為PC的中點(diǎn),則異面直線PA與BE所成角的余弦值為()A. B. C. D.4.若某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.35.函數(shù)f(x)=x?lnA. B.C. D.6.高一某班男生36人,女生24人,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為的樣本,若抽出的女生為12人,則的值為()A.18 B.20 C.30 D.367.若,則下列結(jié)論成立的是()A. B.C.的最小值為2 D.8.已知函數(shù)在處取得極小值,則的最小值為()A.4 B.5 C.9 D.109.已知數(shù)列,對(duì)于任意的正整數(shù),,設(shè)表示數(shù)列的前項(xiàng)和.下列關(guān)于的結(jié)論,正確的是()A. B.C. D.以上結(jié)論都不對(duì)10.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A.10 B.20 C.30 D.60二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,兩個(gè)正方形,邊長(zhǎng)為2,.將繞旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,與平面的距離最大值為______.12.在中,分別是角的對(duì)邊,,且的周長(zhǎng)為5,面積,則=______13.已知圓是圓上的一條動(dòng)直徑,點(diǎn)是直線上的動(dòng)點(diǎn),則的最小值是____.14.設(shè)ω為正實(shí)數(shù).若存在a、b(π≤a<b≤2π),使得15.在直角坐標(biāo)系中,已知任意角以坐標(biāo)原點(diǎn)為頂點(diǎn),以軸的非負(fù)半軸為始邊,若其終邊經(jīng)過點(diǎn),且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.16.在平行六面體中,為與的交點(diǎn),若存在實(shí)數(shù),使向量,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱柱中,側(cè)棱底面,,,,,且點(diǎn)和分別為和的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(diǎn),若直線和平面所成角的正弦值為,求線段的長(zhǎng).18.如圖,已知圓:,點(diǎn).(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;(2)過點(diǎn)的直線與圓相交于、兩點(diǎn),為線段的中點(diǎn),求線段長(zhǎng)度的取值范圍.19.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項(xiàng)公式;(3)設(shè),數(shù)列的前n項(xiàng)和,求證:20.如圖,四棱錐中,底面,,,點(diǎn)在線段上,且.(1)求證:平面;(2)若,,,求四棱錐的體積;21.已知平面向量,,,其中,(1)若為單位向量,且,求的坐標(biāo);(2)若且與垂直,求向量,夾角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

根據(jù)誘導(dǎo)公式化簡(jiǎn)解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點(diǎn)睛】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】

根據(jù)已知先求出數(shù)列的首項(xiàng),公差d已知,可得。【詳解】由題得,,解得,則.故選:A【點(diǎn)睛】本題考查用數(shù)列的通項(xiàng)公式求某一項(xiàng),是基礎(chǔ)題。3、B【解析】

可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點(diǎn),DA方向?yàn)閤軸,AB方向?yàn)閥軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點(diǎn),,,,答案選B.【點(diǎn)睛】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法4、B【解析】

先由三視圖判斷該幾何體為底面是直角三角形的直三棱柱,由棱柱的體積公式即可求出結(jié)果.【詳解】據(jù)三視圖分析知,該幾何體是底面為直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角邊長(zhǎng)分別為1和,三棱柱的高為,所以該幾何體的體積.【點(diǎn)睛】本題主要考查幾何體的三視圖,由三視圖求幾何體的體積,屬于基礎(chǔ)題型.5、D【解析】

判斷函數(shù)的奇偶性排除選項(xiàng),利用特殊點(diǎn)的位置排除選項(xiàng)即可.【詳解】函數(shù)f(x)=x?ln|x|是奇函數(shù),排除選項(xiàng)A,當(dāng)x=1e時(shí),y=-1e,對(duì)應(yīng)點(diǎn)在故選:D.【點(diǎn)睛】本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及特殊點(diǎn)的位置是判斷函數(shù)的圖象的常用方法.6、C【解析】

根據(jù)分層抽樣等比例抽樣的特點(diǎn),進(jìn)行計(jì)算即可.【詳解】根據(jù)題意,可得,解得.故選:C.【點(diǎn)睛】本題考查分層抽樣的等比例抽取的性質(zhì),屬基礎(chǔ)題.7、D【解析】

由,根據(jù)不等式乘方性質(zhì)可判斷A不成立;由指數(shù)函數(shù)單調(diào)性可判斷B不成立;由基本不等式可判斷C不成立,D成立.【詳解】對(duì)于A,若,則有,故A不成立;對(duì)于B,根據(jù)指數(shù)函數(shù)單調(diào)性,函數(shù)單調(diào)遞減,,故B不成立;對(duì)于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;則D能成立.故選:D.【點(diǎn)睛】本題考查基本不等式、不等式的基本性質(zhì),考查不等式性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】由,得,則,所以,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,故選C.9、B【解析】

根據(jù)題意,結(jié)合等比數(shù)列的求和公式,先得到當(dāng)時(shí),,再由極限的運(yùn)算法則,即可得出結(jié)果.【詳解】因?yàn)閿?shù)列,對(duì)于任意的正整數(shù),,表示數(shù)列的前項(xiàng)和,所以,,,...…,所以當(dāng)時(shí),,因此.故選:B【點(diǎn)睛】本題主要考查數(shù)列的極限,熟記等比數(shù)列的求和公式,以及極限的運(yùn)算法則即可,屬于??碱}型.10、B【解析】

由三視圖可知幾何體為四棱錐,利用四棱錐體積公式可求得結(jié)果.【詳解】由三視圖可知,該幾何體為底面為長(zhǎng)為,寬為的長(zhǎng)方形,高為的四棱錐四棱錐體積本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)三視圖求解幾何體體積的問題,關(guān)鍵是能夠通過三視圖將幾何體還原為四棱錐,從而利用棱錐體積公式來進(jìn)行求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

繞旋轉(zhuǎn)一周得到的幾何體是圓錐,點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像,根據(jù)圖像判斷出圓的下頂點(diǎn)距離平面的距離最大,解三角形求得這個(gè)距離的最大值.【詳解】繞旋轉(zhuǎn)一周得到的幾何體是圓錐,故點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像如下圖所示,根據(jù)圖像作法可知,當(dāng)位于圓心的正下方點(diǎn)位置時(shí),到平面的距離最大.在平面內(nèi),過作,交于.在中,,.所以①.其中,,所以①可化為.故答案為:【點(diǎn)睛】本小題主要考查旋轉(zhuǎn)體的概念,考查空間點(diǎn)到面的距離的最大值的求法,考查空間想象能力和運(yùn)算能力,屬于中檔題.12、【解析】

令正弦定理化簡(jiǎn)已知等式,得到,代入題設(shè),求得的長(zhǎng),利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因?yàn)?,由正弦定理,可得,因?yàn)榈闹荛L(zhǎng)為5,即,所以,又因?yàn)椋?,所以.【點(diǎn)睛】本題主要考查了正弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.13、【解析】

由題意得,==﹣=,即可求的最小值.【詳解】圓,得,則圓心C(1,2),半徑R=,如圖可得:==﹣=,點(diǎn)是直線上,所以=()2=,∴的最小值是=.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積、轉(zhuǎn)化和數(shù)形結(jié)合的思想,點(diǎn)到直線的距離,屬于中檔題.14、ω∈[【解析】

由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價(jià)于:存在整數(shù)ωπ當(dāng)ω≥4時(shí),區(qū)間[ωπ,2ωπ]的長(zhǎng)度不小于4π當(dāng)0<ω<4時(shí),注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點(diǎn)睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.15、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點(diǎn):三角函數(shù)的概念.16、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因?yàn)椋忠驗(yàn)?,所以,所?故答案為:【點(diǎn)睛】本題主要考查了空間向量的基本定理,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,依題意可得,又因?yàn)榉謩e為和的中點(diǎn),得.(Ⅰ)證明:依題意,可得為平面的一個(gè)法向量,,由此可得,,又因?yàn)橹本€平面,所以平面(Ⅱ),設(shè)為平面的法向量,則,即,不妨設(shè),可得,設(shè)為平面的一個(gè)法向量,則,又,得,不妨設(shè),可得因此有,于是,所以二面角的正弦值為.(Ⅲ)依題意,可設(shè),其中,則,從而,又為平面的一個(gè)法向量,由已知得,整理得,又因?yàn)椋獾茫跃€段的長(zhǎng)為.考點(diǎn):直線和平面平行和垂直的判定與性質(zhì),二面角、直線與平面所成的角,空間向量的應(yīng)用.18、(1)或;(2).【解析】試題分析:(1)設(shè)直線方程點(diǎn)斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗(yàn)證斜率不存在情況是否滿足題意(2)先求點(diǎn)的軌跡:為圓,再根據(jù)點(diǎn)到圓上點(diǎn)距離關(guān)系確定最值試題解析:(1)當(dāng)過點(diǎn)直線的斜率不存在時(shí),其方程為,滿足條件.當(dāng)切線的斜率存在時(shí),設(shè):,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點(diǎn)的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長(zhǎng)度的最大值為,最小值為,所以線段長(zhǎng)度的取值范圍為.19、(1);;(2)(3)見證明;【解析】

(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗(yàn)一下是否適合此表達(dá)式;(3)用裂項(xiàng)相消法求和.【詳解】解:(1)由已知得,∴(2)由,①得時(shí),,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【點(diǎn)睛】本題考查由數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.求通項(xiàng)公式時(shí)的方法與已知求的方法一樣,本題就相當(dāng)于已知數(shù)列的前項(xiàng)和,要求.注意首項(xiàng)求法的區(qū)別.20、(1)證明見解析(2)【解析】

(1)根據(jù)底面證得,證得,由此證得平面.(2)利用錐體體積公式,計(jì)算出所求錐體體積.【詳解】(1)證明:底面,平面,,,,,又,平面,平面,平面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論