版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南京市玄武高級中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若則一定有()A. B. C. D.2.某校高二理(1)班學習興趣小組為了調(diào)查學生喜歡數(shù)學課的人數(shù)比例,設(shè)計了如下調(diào)查方法:(1)在本校中隨機抽取100名學生,并編號1,2,3,…,100;(2)在箱內(nèi)放置了兩個黃球和三個紅球,讓抽取到的100名學生分別從箱中隨機摸出一球,記住其顏色并放回;(3)請下列兩類學生站出來,一是摸到黃球且編號數(shù)為奇數(shù)的學生,二是摸到紅球且不喜歡數(shù)學課的學生。若共有32名學生站出來,那么請用統(tǒng)計的知識估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是()A.80% B.85% C.90% D.92%3.甲、乙兩名運動員分別進行了5次射擊訓練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運動員的平均成績分別用表示,方差分別用表示,則A. B.C. D.4.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.5.已知函數(shù)f(x)滿足:f(x)=-f(-x),且當x∈(-∞,0]時,成立,若則a,b,c的大小關(guān)系是()A.a(chǎn)>b>c B.c>a>b C.b>a>c D.c>b>a6.如右圖所示的直觀圖,其表示的平面圖形是(A)正三角形(B)銳角三角形(C)鈍角三角形(D)直角三角形7.已知直線,直線,若,則直線與的距離為()A. B. C. D.8.如果連續(xù)拋擲一枚質(zhì)地均勻的骰子100次,那么第95次出現(xiàn)正面朝上的點數(shù)為4的概率為()A. B. C. D.9.用數(shù)學歸納法證明的過程中,設(shè),從遞推到時,不等式左邊為()A. B.C. D.10.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線l與圓C:交于A,B兩點,,則滿足條件的一條直線l的方程為______.12.若,則__________.(結(jié)果用反三角函數(shù)表示)13.已知向量,,且,則______.14.經(jīng)過點且在x軸上的截距等于在y軸上的截距的直線方程是________.15.若、分別是方程的兩個根,則______.16.已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)(1)等比數(shù)列單調(diào)遞增的充要條件是,且;(2)數(shù)列:,,,……,也是等比數(shù)列;(3);(4)點在函數(shù)(,為常數(shù),且,)的圖像上.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對邊分別為,且.(1)求;(2)若,點在邊上,,,求的面積.18.如圖,在三棱錐中,,分別為,的中點,且.(1)證明:平面;(2)若平面平面,證明:.19.已知等差數(shù)列的前n項和為,關(guān)于x的不等式的解集為.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前n項和.20.已知數(shù)列{an}和{bn}滿足a1=1,b1=0,,.(1)證明:{an+bn}是等比數(shù)列,{an–bn}是等差數(shù)列;(2)求{an}和{bn}的通項公式.21.已知.(1)求;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選2、A【解析】
先分別計算號數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號數(shù)為奇數(shù)的學生,進而可得摸到紅球且不喜歡數(shù)學課的學生人數(shù),由此可得估計該校學生中喜歡數(shù)學課的人數(shù)比例.【詳解】解:由題意,號數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為那么按概率計算摸到黃球且號數(shù)為奇數(shù)的學生有個共有32名學生站出來,則有12個摸到紅球且不喜歡數(shù)學課的學生,不喜歡數(shù)學課的學生有:,喜歡數(shù)學課的有80個,估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是:.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3、D【解析】
分別計算平均值和方差,比較得到答案.【詳解】由題意可得,,.故.故答案選D【點睛】本題考查了數(shù)據(jù)的平均值和方差的計算,意在考查學生的計算能力.4、C【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】作出約束條件表示的可行域如圖,化目標函數(shù)為,聯(lián)立,解得,由圖可知,當直線過點時,z取得最大值11,故選:C.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.5、B【解析】
根據(jù)已知條件判斷出函數(shù)的奇偶性,利用構(gòu)造函數(shù)法,結(jié)合已知條件,判斷出的單調(diào)性,結(jié)合的奇偶性比較出的大小關(guān)系.【詳解】由于,所以為奇函數(shù).構(gòu)造函數(shù),依題意,當時,,所以在區(qū)間上遞減.由于,所以為偶函數(shù),故在上遞增..,.由于,所以.故選:B【點睛】本小題主要考查函數(shù)的奇偶性和單調(diào)性,考查構(gòu)造函數(shù)法判斷函數(shù)的單調(diào)性,考查比較大小的方法,屬于中檔題.6、D【解析】略7、A【解析】
利用直線平行的性質(zhì)解得,再由兩平行線間的距離求解即可【詳解】∵直線l1:ax+2y﹣1=0,直線l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直線l1:1x-2y+1=0,直線l2:1x-2y+3=0,故與的距離為故選A.【點睛】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用.8、B【解析】
由隨機事件的概念作答.【詳解】拋擲一枚質(zhì)地均勻的骰子,出現(xiàn)正面朝上的點數(shù)為4,這個事件是隨機事件,每次拋擲出現(xiàn)的概率是相等的,都是,不會隨機拋擲次數(shù)的變化而變化.故選:B.【點睛】本題考查隨機事件的概率,屬于基礎(chǔ)題.9、C【解析】
比較與時不等式左邊的項,即可得到結(jié)果【詳解】因此不等式左邊為,選C.【點睛】本題考查數(shù)學歸納法,考查基本分析判斷能力,屬基礎(chǔ)題10、C【解析】由三視圖可知,此組合體上部是一個母線長為5,底面圓半徑是3的圓錐,下部是一個高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一)【解析】
確定圓心到直線的距離,即可求直線的方程.【詳解】由題意得圓心坐標,半徑,,∴圓心到直線的距離為,∴滿足條件的一條直線的方程為.故答案為:(答案不唯一).【點睛】本題考查直線和圓的方程的應用,考查學生的計算能力,屬于中檔題.12、;【解析】
由條件利用反三角函數(shù)的定義和性質(zhì)即可求解.【詳解】,則,故答案為:【點睛】本題考查了反三角函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.13、【解析】
根據(jù)的坐標表示,即可得出,解出即可.【詳解】,,.【點睛】本題主要考查平行向量的坐標關(guān)系應用.14、或【解析】
當直線不過原點時,設(shè)直線的方程為,把點代入求得的值,即可求得直線方程,當直線過原點時,直線的方程為,綜合可得答案.【詳解】當直線不過原點時,設(shè)直線的方程為,把點代入可得:,即此時直線的方程為:當直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點睛】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.15、【解析】
利用韋達定理可求出和的值,然后利用兩角和的正切公式可計算出的值.【詳解】由韋達定理得,,因此,.故答案為:.【點睛】本題考查利用兩角和的正切公式求值,同時也考查了一元二次方程根與系數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.16、(3)【解析】
根據(jù)遞增數(shù)列的概念,以及等比數(shù)列的通項公式,充分條件與必要條件的概念,可判斷(1);令,為偶數(shù),可判斷(2);根據(jù)等比數(shù)列的性質(zhì),直接計算,可判斷(3);令,結(jié)合題意,可判斷(4),進而可得出結(jié)果.【詳解】(1)若等比數(shù)列單調(diào)遞增,則,所以或,故且不是等比數(shù)列單調(diào)遞增的充要條件;(1)錯;(2)若,為偶數(shù),則,,因等比數(shù)列中的項不為,故此時數(shù)列,,,……,不成等比數(shù)列;(2)錯;(3),所以(3)正確;(4)若,則,若點在函數(shù)的圖像上,則,因,,故不能對任意恒成立;故(4)錯.故答案為:(3)【點睛】本題主要考命題真假的判定,熟記等比數(shù)列的性質(zhì),以及等比數(shù)列的通項公式與求和公式即可,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由正弦定理、三角函數(shù)恒等變換化簡已知可得:,結(jié)合范圍,可得,進而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形內(nèi)角和定理可求,即可求得,再利用三角形的面積公式即可計算得解.【詳解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,點D在邊上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【點睛】本題主要考查了正弦定理、三角函數(shù)恒等變換的應用,三角形內(nèi)角和定理及三角形的面積公式在解三角形中的應用,考查了計算能力和轉(zhuǎn)化能力,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)先證明,再證明平面;(2)先證明平面,再證明.【詳解】證明:(1)因為,分別為,的中點,所以.又平面,平面,所以平面.(2)因為,為中點,所以.又平面平面.平面平面,所以平面.又平面,所以.【點睛】本題主要考查空間幾何元素位置關(guān)系的證明,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(1);(2).【解析】
(1)根據(jù)不等式的解集,得到和,從而得到等差數(shù)列的公差,得到的通項公式;(2)由(1)得到的的通項,得到的通項,利用等比數(shù)列的求和公式,得到答案.【詳解】(1)因為關(guān)于x的不等式的解集為,所以得到,,所以,,為等差數(shù)列,設(shè)其公差為,所以,所以,所以(2)因為,所以所以是以為首項,為公比的等比數(shù)列,所以.【點睛】本題考查一元二次不等式解集與系數(shù)的關(guān)系,求等差數(shù)列的通項,等比數(shù)列求和,屬于簡單題.20、(1)見解析;(2),.【解析】
(1)可通過題意中的以及對兩式進行相加和相減即可推導出數(shù)列是等比數(shù)列以及數(shù)列是等差數(shù)列;(2)可通過(1)中的結(jié)果推導出數(shù)列以及數(shù)列的通項公式,然后利用數(shù)列以及數(shù)列的通項公式即可得出結(jié)果.【詳解】(1)由題意可知,,,,所以,即,所以數(shù)列是首項為、公比為的等比數(shù)列,,因為,所以,數(shù)列是首項、公差為的等差數(shù)列,.(2)由(1)可知,,,所以,.【點睛】本題考查了數(shù)列的相關(guān)性質(zhì),主要考查了等差數(shù)列以及等比數(shù)列的相關(guān)證明,證明數(shù)列是等差數(shù)列或者等比數(shù)列一定要結(jié)合等差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度冷鏈物流空調(diào)清洗消毒與防凍服務合同2篇
- 2025年度企業(yè)內(nèi)部員工保密協(xié)議(新修訂)5篇
- 二零二五年度國際會議兼職同聲傳譯及外教聘請協(xié)議3篇
- 2025年香港建筑工程合同正規(guī)范本標準版6篇
- 二零二五年度城市污水處理廠承包管理服務協(xié)議4篇
- 二零二五年度大型活動現(xiàn)場解說配音合作協(xié)議4篇
- 2025年噴灌系統(tǒng)節(jié)水技術(shù)創(chuàng)新合作合同4篇
- 2025年度農(nóng)產(chǎn)品供應鏈金融合作協(xié)議-@-1
- 二零二五年度展覽館場地租賃與展會組織服務合同3篇
- 2025年金融科技支付系統(tǒng)開發(fā)與運營合同3篇
- 茉莉花-附指法鋼琴譜五線譜
- 結(jié)婚函調(diào)報告表
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計規(guī)范-PDF解密
- 冷庫制冷負荷計算表
- 肩袖損傷護理查房
- 設(shè)備運維管理安全規(guī)范標準
- 辦文辦會辦事實務課件
- 大學宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 申請使用物業(yè)專項維修資金征求業(yè)主意見表
評論
0/150
提交評論