山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷含解析_第1頁
山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷含解析_第2頁
山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷含解析_第3頁
山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷含解析_第4頁
山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省日照嵐山區(qū)2022年中考數(shù)學模擬預測試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.52.cos60°的值等于()A.1 B. C. D.3.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:①4a+2b<0;②﹣1≤a≤;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.如圖,內接于,若,則A. B. C. D.5.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.6.已知方程x2﹣x﹣2=0的兩個實數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣17.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個8.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或59.如果關于x的分式方程有負分數(shù)解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.910.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°11.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.12.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,20二、填空題:(本大題共6個小題,每小題4分,共24分.)13.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.14.因式分解:(a+1)(a﹣1)﹣2a+2=_____.15.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設=,=,那么等于__(結果用、的線性組合表示).16.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.17.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內,將正ΔABC繞點A逆時針針旋轉,當點C第一次落在圓上時,旋轉角的正切值為_______________18.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷內容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調查的共有人,圖表中的,.統(tǒng)計圖中,類所對應的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團”的人數(shù).20.(6分)如圖,的頂點是方格紙中的三個格點,請按要求完成下列作圖,①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.在圖1中畫出邊上的中線;在圖2中畫出,使得.21.(6分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx22.(8分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?23.(8分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).24.(10分)從2017年1月1日起,我國駕駛證考試正式實施新的駕考培訓模式,新規(guī)定C2駕駛證的培訓學時為40學時,駕校的學費標準分不同時段,普通時段a元/學時,高峰時段和節(jié)假日時段都為b元/學時.(1)小明和小華都在此駕校參加C2駕駛證的培訓,下表是小明和小華的培訓結算表(培訓學時均為40),請你根據(jù)提供的信息,計算出a,b的值.學員培訓時段培訓學時培訓總費用小明普通時段206000元高峰時段5節(jié)假日時段15小華普通時段305400元高峰時段2節(jié)假日時段8(2)小陳報名參加了C2駕駛證的培訓,并且計劃學夠全部基本學時,但為了不耽誤工作,普通時段的培訓學時不會超過其他兩個時段總學時的,若小陳普通時段培訓了x學時,培訓總費用為y元①求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;②小陳如何選擇培訓時段,才能使得本次培訓的總費用最低?25.(10分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.26.(12分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關于x的一次函數(shù),其關系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關于x的函數(shù)表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關系可以用來描述.請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.27.(12分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內容是解題的關鍵.2、A【解析】

根據(jù)特殊角的三角函數(shù)值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關鍵.3、C【解析】

①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結論①錯誤;

②利用一次函數(shù)圖象上點的坐標特征結合b=-2a可得出a=-,再結合拋物線與y軸交點的位置即可得出-1≤a≤-,結論②正確;

③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數(shù)m,a+b≥am2+bm總成立,結論③正確;

④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結論①錯誤;

②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),

∴2≤c≤3,

∴-1≤a≤-,結論②正確;

③∵a<0,頂點坐標為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對于任意實數(shù)m,a+b≥am2+bm總成立,結論③正確;

④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個交點,

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,

∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結合④正確.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點以及二次函數(shù)的性質,觀察函數(shù)圖象,逐一分析四個結論的正誤是解題的關鍵.4、B【解析】

根據(jù)圓周角定理求出,根據(jù)三角形內角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質、三角形內角和定理是解題的關鍵.5、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.6、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.7、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).8、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.9、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.10、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B11、B【解析】

根據(jù)函數(shù)的圖象和交點坐標即可求得結果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵是注意掌握數(shù)形結合思想的應用.12、D【解析】

先計算出這個隊共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

設購買籃球x個,則購買足球個,根據(jù)總價單價購買數(shù)量結合購買資金不超過3000元,即可得出關于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設購買籃球x個,則購買足球個,根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點睛】本題考查了一元一次不等式的應用,根據(jù)各數(shù)量間的關系,正確列出一元一次不等式是解題的關鍵.14、(a﹣1)1.【解析】

提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.15、【解析】

根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.16、.【解析】試題分析:設正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質;2.勾股定理;3.銳角三角函數(shù)的定義17、3【解析】

作輔助線,首先求出∠DAC的大小,進而求出旋轉的角度,即可得出答案.【詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉角的正切值是33故答案為:33【點睛】此題考查等邊三角形的性質,旋轉的性質,點與圓的位置關系,解直角三角形,解題關鍵在于作輔助線.18、1【解析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【點睛】本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)150、45、36;(2)28.8°;(3)450人【解析】

(1)由B項目的人數(shù)及其百分比求得總人數(shù),根據(jù)各項目人數(shù)之和等于總人數(shù)求得m=45,再用D項目人數(shù)除以總人數(shù)可得n的值;

(2)360°乘以A項目人數(shù)占總人數(shù)的比例可得;

(3)利用總人數(shù)乘以樣本中C人數(shù)所占比例可得.【詳解】解:(1)接受問卷調查的共有30÷20%=150人,m=150-(12+30+54+9)=45,∴n=36,

故答案為:150、45、36;(2)A類所對應的扇形圓心角的度數(shù)為故答案為:28.8°;(3)(人)答:估計該社區(qū)參加碧沙崗“暴走團”的大約有450人【點睛】本題考查的是統(tǒng)計表和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)見解析;(2)見解析.【解析】

(1)利用矩形的性質得出AB的中點,進而得出答案.(2)利用矩形的性質得出AC、BC的中點,連接并延長,使延長線段與連接這兩個中點的線段相等.【詳解】(1)如圖所示:CD即為所求.(2)【點睛】本題考查應用設計與作圖,正確借助矩形性質和網(wǎng)格分析是解題關鍵.21、(1)y=﹣2x+1;y=﹣80x【解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標,再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標,進而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標即可.(3)觀察函數(shù)圖象,當函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當x=10時,y=﹣8,∴點E坐標為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【點睛】本題考查了應用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖像解不等式.22、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點.∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點睛:本題是幾何變換綜合題型,主要考查了平移變換的性質,勾股定理,正方形的判定,菱形的判定與性質以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關鍵.23、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據(jù)在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據(jù)銳角三角函數(shù)和題目中的數(shù)據(jù)可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,∴,設DE=5x米,則EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)過點D作AB的垂線,垂足為H,設DH的長為x,由題意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根據(jù)勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大樓AB的高度是34米.24、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=時,y有最小值,此時y最小=-60×+7200=6400(元).【解析】

(1)根據(jù)小明和小華的培訓結算表列出關于a、b的二元一次方程組,解方程即可求解;(2)①根據(jù)培訓總費用=普通時段培訓費用+高峰時段和節(jié)假日時段培訓費用列出y與x之間的函數(shù)關系式,進而確定自變量x的取值范圍;②根據(jù)一次函數(shù)的性質結合自變量的取值范圍即可求解.【詳解】(1)由題意,得,解得,故a,b的值分別是120,180;(2)①由題意,得y=120x+180(40-x),化簡得y=-60x+7200,∵普通時段的培訓學時不會超過其他兩個時段總學時的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y隨x的增大而減小,∴x取最大值時,y有最小值,∵0≤x≤;∴x=時,y有最小值,此時y最小=-60×+7200=6400(元).【點睛】本題考查了一次函數(shù)的應用,二元一次方程組的應用,理解題意得出數(shù)量關系是解題的關鍵.25、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據(jù)拋物線的對稱性得到點B的坐標,利用待定系數(shù)法求得解析式后再進行配方即可得到頂點坐標;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題解析:(1)當x=0時,拋物線y=ax2+bx+3=3,所以點C坐標為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).26、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論