2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題含解析_第1頁
2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題含解析_第2頁
2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題含解析_第3頁
2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題含解析_第4頁
2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年安徽省滁州市明光市中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)3.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°4.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,35.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a≥ B.a> C.a≤ D.a>6.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα7.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°8.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元9.已知反比例函數(shù)y=-2A.圖象必經過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內 D.若x>1,則0>y>-210.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.8二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解a3-6a2+9a=_____.12.計算(﹣3)+(﹣9)的結果為______.13.某種商品每件進價為10元,調查表明:在某段時間內若以每件x元(10≤x≤20且x為整數(shù))出售,可賣出(20﹣x)件,若使利潤最大,則每件商品的售價應為_____元.14.已知二次函數(shù)的圖象開口向上,且經過原點,試寫出一個符合上述條件的二次函數(shù)的解析式:_____.(只需寫出一個)15.小青在八年級上學期的數(shù)學成績如下表所示.平時測驗期中考試期末考試成績869081如果學期總評成績根據(jù)如圖所示的權重計算,小青該學期的總評成績是_____分.16.若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.三、解答題(共8題,共72分)17.(8分)某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數(shù)量與用64

000元購進B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進價分別是多少?現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.18.(8分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.19.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當AC=5,BC=6時,求DF的長.20.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當AC=2,CD=1時,求⊙O的面積.21.(8分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.22.(10分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).23.(12分)嘉淇同學利用業(yè)余時間進行射擊訓練,一共射擊7次,經過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.這組成績的眾數(shù)是;求這組成績的方差;若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).24.在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質.注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.2、D【解析】

點在第二象限的條件是:橫坐標是負數(shù),縱坐標是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質,解題的關鍵是掌握點的坐標的性質.3、C【解析】

根據(jù)等腰三角形的性質得到∠CDA=∠A=50°,根據(jù)三角形內角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質可知∠B+∠BCD=∠CDA,進而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點睛】本題考查了等腰三角形的性質、三角形內角和定理、線段垂直平分線定理以及三角形外角性質,熟練掌握各個性質定理是解題關鍵.4、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.5、B【解析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.6、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.7、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.8、A【解析】

設這種商品每件進價為x元,根據(jù)題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數(shù),根據(jù)題中的等量關系列出正確的方程.9、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經過點(-1,2);B、在每個象限內y隨x的增大而增大,在自變量取值范圍內不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數(shù)的性質10、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(a-3)2【解析】

根據(jù)因式分解的方法與步驟,先提取公因式,再根據(jù)完全平方公式分解即可.【詳解】解:故答案為:.【點睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關鍵.12、-1【解析】試題分析:利用同號兩數(shù)相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.13、1【解析】

本題是營銷問題,基本等量關系:利潤=每件利潤×銷售量,每件利潤=每件售價﹣每件進價.再根據(jù)所列二次函數(shù)求最大值.【詳解】解:設利潤為w元,則w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴當x=1時,二次函數(shù)有最大值25,故答案是:1.【點睛】本題考查了二次函數(shù)的應用,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.14、y=x2等【解析】分析:根據(jù)二次函數(shù)的圖象開口向上知道a>1,又二次函數(shù)的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數(shù)的圖象開口向上,∴a>1.∵二次函數(shù)的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,對考查學生所學函數(shù)的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數(shù)形結合的數(shù)學思想.15、84.2【解析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.16、0或-1?!窘馕觥坑捎跊]有交待是二次函數(shù),故應分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點。當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即。綜上所述,若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1。三、解答題(共8題,共72分)17、(1)每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【解析】

(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意列出方程,求出方程的解即可得到結果;

(2)由總利潤=單輛利潤×輛數(shù),列出y與x的關系式,利用一次函數(shù)性質確定出所求即可.【詳解】(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意,得=,解得x=1600,經檢驗,x=1600是原方程的解,x+10=1600+10=2000,答:每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)由題意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根據(jù)題意,得,解得:33≤m≤1,∵m為正整數(shù),∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y隨m的增大而減小,∴當m=34時,y有最大值,最大值為:﹣50×34+15000=13300(元).答:當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【點睛】本題主要考查一次函數(shù)的應用、分式方程的應用及一元一次不等式組的應用.仔細審題,找出題目中的數(shù)量關系是解答本題的關鍵.18、6+.【解析】

利用負整數(shù)指數(shù)冪、零指數(shù)冪的意義和特殊角的三角函數(shù)值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.19、(1)詳見解析;(2)詳見解析;(3)DF=.【解析】

(1)先判斷出AD⊥BC,即可得出結論;(2)先判斷出OD∥AC,進而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結論;(3)先求出OD,再求出CD=3,進而求出CE,AE,DE,再判斷出,即可得出結論.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CE?AC,∵AC=5,∴CE=,∴AE=AC-CE=5-=,在Rt△CDE中,根據(jù)勾股定理得,DE=,由(2)知,OD∥AC,∴,∴,∴DF=.【點睛】此題是圓的綜合題,主要考查了圓的性質,等腰三角形的性質,相似三角形的判斷和性質,勾股定理,判斷出△CDE∽△CAD是解本題的關鍵.20、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質,圓周角定理,相似三角形的判定與性質,以及勾股定理,熟練掌握相關性質是解本題的關鍵.21、(1)E(2,1);(2);(1).【解析】

(1)先確定出點C坐標,進而得出點F坐標,即可得出結論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點的坐標為1,∴E(2,1);(2)∵F點的橫坐標為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點坐標公式,相似三角形的判定和性質,銳角三角函數(shù),求出CE:CF是解本題的關鍵.22、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉變換、等腰三角形的性質、全等三角形的判定和性質等知識,解題的關鍵是學會利用“手拉手”圖形中的全等三角形解決問題,學會構造“手拉手”模型,解決實際問題,屬于中考壓軸題.23、(1)10;(2);(3)9環(huán)【解析】

(1)根據(jù)眾數(shù)的定義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),結合統(tǒng)計圖得到答案.(2)先求這組成績的平均數(shù),再求這組成績的方差;(3)先求原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論