版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省武平縣第二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.102.一個幾何體的三視圖如圖,則該幾何體的體積為()A. B. C.10 D.3.已知直線,平面,給出下列命題:①若,且,則②若,且,則③若,且,則④若,且,則其中正確的命題是()A.①③ B.②④ C.③④ D.①②4.如圖,飛機的航線和山頂在同一個鉛垂平面內(nèi),已知飛機的高度為海拔20000m,速度為900km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過80s后又看到山頂?shù)母┙菫?5A.5000(3+1)C.5000(3-3)5.已知數(shù)列、、、、,可猜想此數(shù)列的通項公式是().A. B.C. D.6.已知都是正數(shù),且,則的最小值等于A. B.C. D.7.已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(x+4)2=16,則圓O1與圓O2的位置關系為()A.外切 B.內(nèi)切 C.相交 D.相離8.在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為()A. B. C. D.9.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或310.等差數(shù)列的前項和為,,,則()A.21 B.15 C.12 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.福利彩票“雙色球”中紅色球由編號為01,02,…,33的33個個體組成,某彩民利用下面的隨機數(shù)表(下表是隨機數(shù)表的第一行和第二行)選取6個紅色球,選取方法是從隨機數(shù)表中第1行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第3個紅色球的編號為______.4954435482173793232887352056438426349164572455068877047447672176335025839212067612.如圖,已知,,任意點關于點的對稱點為,點關于點的對稱點為,則向量_______(用,表示向量)13.設的內(nèi)角、、的對邊分別為、、,且滿足.則______.14.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是______15.在等腰中,為底邊的中點,為的中點,直線與邊交于點,若,則___________.16.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設,是圓上任意兩點,點關于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.18.已知圓的圓心在線段上,圓經(jīng)過點,且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點,當最小時,求直線的方程及的最小值.19.有n名學生,在一次數(shù)學測試后,老師將他們的分數(shù)(得分取正整數(shù),滿分為100分),按照,,,,的分組作出頻率分布直方圖(如圖1),并作出樣本分數(shù)的莖葉圖(如圖2)(圖中僅列出了得分在,的數(shù)據(jù)).(1)求樣本容量n和頻率分布直方圖中x、y的值;(2)分數(shù)在的學生中,男生有2人,現(xiàn)從該組抽取三人“座談”,求至少有兩名女生的概率.20.有一款手機,每部購買費用是5000元,每年網(wǎng)絡費和電話費共需1000元;每部手機第一年不需維修,第二年維修費用為100元,以后每一年的維修費用均比上一年增加100元.設該款手機每部使用年共需維修費用元,總費用元.(總費用購買費用網(wǎng)絡費和電話費維修費用)(1)求函數(shù)、的表達式:(2)這款手機每部使用多少年時,它的年平均費用最少?21.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:把圓的方程化為標準方程得,所以圓心坐標為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.2、B【解析】
由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1.再由正四棱臺體積公式求解.【詳解】由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1,所以,,∴該正四棱臺的體積.故選:B.【點睛】本題考查由三視圖求正四棱臺的體積,關鍵是由三視圖判斷出原幾何體的形狀,屬于基礎題.3、A【解析】
根據(jù)面面垂直,面面平行的判定定理判斷即可得出答案?!驹斀狻竣偃?,則在平面內(nèi)必有一條直線使,又即,則,故正確。②若,且,與可平行可相交,故錯誤③若,即又,則,故正確④若,且,與可平行可相交,故錯誤所以①③正確,②④錯誤故選A【點睛】本題考查面面垂直,面面平行的判定,屬于基礎題。4、C【解析】分析:先求AB的長,在△ABC中,可求BC的長,進而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山頂?shù)暮0胃叨龋斀猓喝鐖D,∠A=30°,∠ACB=45°,
AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30點睛:本題以實際問題為載體,考查正弦定理的運用,關鍵是理解俯角的概念,屬于基礎題.5、D【解析】
利用賦值法逐項排除可得出結果.【詳解】對于A選項,,不合乎題意;對于B選項,,不合乎題意;對于C選項,,不合乎題意;對于D選項,當為奇數(shù)時,,此時,當為偶數(shù)時,,此時,合乎題意.故選:D.【點睛】本題考查利用觀察法求數(shù)列的通項,考查推理能力,屬于中等題.6、C【解析】
,故選C.7、A【解析】
先求出兩個圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.【詳解】圓的圓心為,半徑等于1,圓的圓心為,半徑等于4,它們的圓心距等于,等于半徑之和,兩個圓相外切.故選A.【點睛】判斷兩圓的位置關系時常用幾何法,即利用兩圓圓心之間的距離與兩圓半徑之間的關系,一般不采用代數(shù)法.8、A【解析】因為,若,則,,故選A.9、D【解析】
根據(jù)直線的平行關系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗,當或時,兩條直線均平行.故選:D【點睛】此題考查根據(jù)直線平行關系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.10、B【解析】依題意有,解得,所以.二、填空題:本大題共6小題,每小題5分,共30分。11、05【解析】
根據(jù)給定的隨機數(shù)表的讀取規(guī)則,從第一行第6、7列開始,兩個數(shù)字一組,從左向右讀取,重復的或超出編號范圍的跳過,即可.【詳解】根據(jù)隨機數(shù)表,排除超過33及重復的編號,第一個編號為21,第二個編號為32,第三個編號05,故選出來的第3個紅色球的編號為05.【點睛】本題主要考查了簡單隨機抽樣中的隨機數(shù)表法,屬于容易題.12、【解析】
先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎題.13、4【解析】
解法1有題設及余弦定理得.故.解法2如圖4,過點作,垂足為.則,.由題設得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.14、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣15、;【解析】
題中已知等腰中,為底邊的中點,不妨于為軸,垂直平分線為軸建立直角坐標系,這樣,我們能求出點坐標,根據(jù)直線與求出交點,求向量的數(shù)量積即可.【詳解】如上圖,建立直角坐標系,我們可以得出直線,聯(lián)立方程求出,,即填寫【點睛】本題中因為已知底邊及高的長度,所有我們建立直角坐標系,求出相應點坐標,而作為F點的坐標我們可以通過直線交點求出,把向量數(shù)量積通過向量坐標運算來的更加直觀.16、-3【解析】試題分析:由兩直線平行可得:,經(jīng)檢驗可知時兩直線重合,所以.考點:直線平行的判定.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)見解析【解析】
(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結合勾股定理,可以求出圓的半徑,進而可以求出圓的方程;(2)設出直線的截距式方程,利用圓的切線性質(zhì),得到一個方程,結合已知,又得到一個方程,兩個方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設,,則,,,分別求出直線與軸交點坐標、直線與軸交點坐標,求出的表達式,通過計算可得.【詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設,,則,,,直線與軸交點坐標為,,直線與軸交點坐標為,,,為定值2.【點睛】本題考查了圓的垂徑定理、圓的切線性質(zhì)、勾股定理,考查了求直線方程,考查了數(shù)學運算能力.18、(1)(2)的方程為,最小為【解析】
(1)設圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點,當直線與直線垂直時,直線被圓截得的弦最小,求解即可.【詳解】解:(1)設圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點斜式,所以過定點.又點在圓內(nèi),當直線與直線垂直時,直線被圓截得的弦最?。驗?,所以的斜率,所以的方程為,即,因為,,所以.【點睛】求圓的弦長的常用方法幾何法:設圓的半徑為r,弦心距為d,弦長為l,則;②代數(shù)方法:運用韋達定理及弦長公式:==.19、(1),,;(2)【解析】
(1)利用之間的人數(shù)和頻率即可求出,進而可求出、;(2)列出所有基本事件,再找到符合要求的基本事件即可得解.【詳解】(1)由題意可知,樣本容量,,.(2)由題意知,分數(shù)在的學生共有5人,其中男生2人,女生3人,分別設編號為,和,,,則從該組抽取三人“座談”包含的基本事件:,,,,,,,,,,共計10個.記事件A“至少有兩名女生”,則事件A包含的基本事件有:,,,,,,,共計7個.所以至少有兩名女生的概率為.【點睛】本題考查了頻率分布直方圖和古典概型概率的求法,屬于基礎題.20、(1),;(2)這款手機使用年時它的年平均費用最少【解析】
(1)第年的維修費用為,根據(jù)等差數(shù)列求和公式可求得;將加上購買費用和年的網(wǎng)絡費和電話費總額即可得到;(2)平均費用,利用基本不等式可求得最小值,根據(jù)取等條件可求得的取值.【詳解】(1)則(2)設每部手機使用年的平均費用為則當,即時,這款手機使用年時它的年平均費用最少【點睛】本題考查構造合適的函數(shù)模型解決實際問題,涉及到函數(shù)最值的求解問題;解決本題中最值問題的關鍵是能夠得到符合基本不等式的形式,利用基本不等式求得和的最小值.21、(1)證明見解析(2)【解析】
(1)連接,,作為棱的中點,連結,,由平面平面,得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林師范大學《數(shù)字圖像技術》2021-2022學年期末試卷
- 吉林師范大學《滿文文獻翻譯》2021-2022學年第一學期期末試卷
- 電力設備除銹刷漆施工合同
- 小學六年級綜合素質(zhì)評價工作總結
- 吉林師范大學《大學體育Ⅳ》2021-2022學年第一學期期末試卷
- 吉林大學《藥物毒理學》2021-2022學年第一學期期末試卷
- 學校網(wǎng)絡資源共享方案
- 酒店行業(yè)競爭力提升方案
- 污水處理項目濾料更換成本方案
- 吉林大學《熱流體工程學Ⅰ》2021-2022學年第一學期期末試卷
- 車身NVH性能試驗任務書
- 哈尼族介紹課件
- 人教版八年級地理下冊《“東方明珠”──香港和澳門》說課稿
- DB33∕T 2333-2021 飼料中β-胡蘿卜素的測定 高效液相色譜法
- 起重機維修服務方案
- 信貸業(yè)務檔案管理暫行辦法
- 湖南2023年湖南銀行上半年社會招聘考試參考題庫含答案詳解
- 潼關中金黃金礦業(yè)有限責任公司Q01號脈礦山地質(zhì)環(huán)境保護與土地復墾方案
- 新生兒高頻振蕩通氣課件
- 粒子物理基礎-課件
- 新生代員工特點分析
評論
0/150
提交評論