版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆內(nèi)蒙古自治區(qū)赤峰市數(shù)學高一下期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知正數(shù)、滿足,則的最小值為()A. B. C. D.2.函數(shù)的圖像的一條對稱軸是()A. B. C. D.3.已知函數(shù),則()A.的最小正周期為,最大值為1 B.的最小正周期為,最大值為C.的最小正周期為,最大值為1 D.的最小正周期為,最大值為4.設(shè),則下列不等式恒成立的是A. B.C. D.5.對于任意實數(shù),下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則7.經(jīng)過兩條直線和的交點,且垂直于直線的直線方程為()A. B. C. D.8.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.49.在1和19之間插入個數(shù),使這個數(shù)成等差數(shù)列,若這個數(shù)中第一個為,第個為,當取最小值時,的值是()A.4 B.5 C.6 D.710.已知等比數(shù)列的公比為,若,,則()A.-7 B.-5 C.7 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.秦九韶是我國南宋著名數(shù)學家,在他的著作《數(shù)書九章》中有己知三邊求三角形面積的方法:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上以小斜冪乘大斜冪減上,余四約之,為實一為從陽,開平方得積.”如果把以上這段文字寫成公式就是,其中是的內(nèi)角的對邊為.若,且,則面積的最大值為________.12.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.13.若6是-2和k的等比中項,則______.14.已知點和點,點在軸上,若的值最小,則點的坐標為______.15.已知實數(shù)滿足,則的最小值為_______.16.設(shè)等差數(shù)列,的前項和分別為,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若,求函數(shù)的零點;(2)若在恒成立,求的取值范圍;(3)設(shè)函數(shù),解不等式.18.已知,,與的夾角是(1)計算:①,②;(2)當為何值時,與垂直?19.已知常數(shù)且,在數(shù)列中,首項,是其前項和,且,.(1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項公式;(2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項公式;(3)若當且僅當時,數(shù)列取到最小值,求的取值范圍.20.如圖,四棱錐中,底面為矩形,面,為的中點.(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.21.如圖,在四棱錐中,平面,底面為菱形.(1)求證:平面;(2)若為的中點,,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關(guān)鍵,屬于中等題.2、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.3、D【解析】
結(jié)合二倍角公式,對化簡,可求得函數(shù)的最小正周期和最大值.【詳解】由題意,,所以,當時,取得最大值為.由函數(shù)的最小正周期為,故的最小正周期為.故選:D.【點睛】本題考查三角函數(shù)周期性與最值,考查學生的計算求解能力,屬于基礎(chǔ)題.4、C【解析】
利用不等式的性質(zhì),合理推理,即可求解,得到答案.【詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)是任意實數(shù),逐一對選項進行分析即得?!驹斀狻坑深},當時,,則A錯誤;當,時,,則B錯誤;可知,則有,因此C正確;當時,有,可知C錯誤.故選:C【點睛】本題考查判斷正確命題,是基礎(chǔ)題。6、D【解析】
A項,可能相交或異面,當時,存在,,故A項錯誤;B項,可能相交或垂直,當
時,存在,,故B項錯誤;C項,可能相交或垂直,當
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).7、D【解析】
首先求出兩條直線的交點坐標,再根據(jù)垂直求出斜率,點斜式寫方程即可.【詳解】有題知:,解得:,交點.直線的斜率為,所求直線斜率為.所求直線為:,即.故選:D【點睛】本題主要考查如何求兩條直線的交點坐標,同時考查了兩條直線的位置關(guān)系,屬于簡單題.8、B【解析】
由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【點睛】本題主要考查平面向量的運算,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.9、B【解析】
設(shè)等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設(shè)等差數(shù)列公差為,則,從而,此時,故,所以,即,當且僅當,即時取“=”,又,解得,所以,所以,故選:B.【點睛】本題主要考查數(shù)列和不等式的綜合運用,需要學生對所學知識融會貫通,靈活運用.10、A【解析】
由等比數(shù)列通項公式可構(gòu)造方程求得,再利用通項公式求得結(jié)果.【詳解】故選:【點睛】本題考查等比數(shù)列通項公式基本量的計算問題,考查基礎(chǔ)公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)正弦定理和余弦定理,由可得,再由及函數(shù)求最值的知識,即可求解.【詳解】,又,,時,面積的最大值為.故答案為:【點睛】本題主要考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了理解辨析能力與運算求解能力,屬于中檔題.12、3【解析】
根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案.【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取的人數(shù)為.【點睛】本題主要考查了頻率分布直方圖的應(yīng)用,其中解答中熟記頻率分布直方圖的性質(zhì),以及頻率分布直方圖中概率的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、-18【解析】
根據(jù)等比中項的性質(zhì),列出等式可求得結(jié)果.【詳解】由等比中項的性質(zhì)可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質(zhì),屬于基礎(chǔ)題.14、【解析】
作出圖形,作點關(guān)于軸的對稱點,由對稱性可知,結(jié)合圖形可知,當、、三點共線時,取最小值,并求出直線的方程,與軸方程聯(lián)立,即可求出點的坐標.【詳解】如下圖所示,作點關(guān)于軸的對稱點,由對稱性可知,則,當且僅當、、三點共線時,的值最小,直線的斜率為,直線的方程為,即,聯(lián)立,解得,因此,點的坐標為.故答案為:.【點睛】本題考查利用折線段長的最小值求點的坐標,涉及兩點關(guān)于直線對稱性的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.15、【解析】
實數(shù)滿足表示點在直線上,可以看作點到原點的距離,最小值是原點到直線的距離,根據(jù)點到直線的距離公式求解.【詳解】因為實數(shù)滿足=1所以表示直線上點到原點的距離,故的最小值為原點到直線的距離,即,故的最小值為1.【點睛】本題考查點到點,點到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識別.16、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分數(shù)的性質(zhì),將項的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個等差數(shù)列的項的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)(3)見解析【解析】
(1)解方程可得零點;(2)恒成立,可分離參數(shù)得,這樣只要求得在上的最大值即可;(3)注意到的定義域,不等式等價于,這樣可根據(jù)與0,1的大小關(guān)系分類討論.【詳解】(1)當時,令得,,∵,∴函數(shù)的零點是1(2)在恒成立,即在恒成立,分離參數(shù)得:,∵,∴從而有:.(3)令,得,,因為函數(shù)的定義域為,所以等價于(1)當,即時,恒成立,原不等式的解集是(2)當,即時,原不等式的解集是(3)當,即時,原不等式的解集是(4)當,即時,原不等式的解集是綜上所述:當時,原不等式的解集是當時,原不等式的解集是當時,原不等式的解集是當時,原不等式的解集是【點睛】本題考查函數(shù)的零點,考查不等式恒成立問題,考查解含參數(shù)的一元二次不等式.其中不等式恒成立問題可采用參數(shù)法轉(zhuǎn)化為求函數(shù)的最值問題,而解一元二次不等式,必須對參數(shù)分類討論,解題關(guān)鍵是確定分類標準.解一元二次不等式的分類標準有三個方面:一是二次的系數(shù)正負或者為0問題,二是一元二次方程的判別式的正負或0的問題,三是一元二次方程兩根的大小關(guān)系.18、(1)①;②;(2).【解析】
利用數(shù)量積的定義求解出的值;(1)將所求模長平方,從而得到關(guān)于模長和數(shù)量積的式子,代入求得模長的平方,再開平方得到結(jié)果;(2)向量互相垂直得到數(shù)量積等于零,由此建立方程,解方程求得結(jié)果.【詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【點睛】本題考查利用數(shù)量積求解向量的模長、利用數(shù)量積與向量垂直的關(guān)系求解參數(shù)的問題.求解向量的模長關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)化為模長和數(shù)量積運算的形式,從而使問題得以求解.19、(1)證明見解析,;(2)證明見解析,;(3).【解析】
(1)令,求出的值,再令,由,得出,將兩式相減得,再利用等比數(shù)列的定義證明為常數(shù),可得出數(shù)列為等比數(shù)列,并確定等比數(shù)列的首項和公比,可求出;(2)由題意得出,再利用等差數(shù)列的定義證明出數(shù)列為等差數(shù)列,確定等差數(shù)列的首項和公差,可求出數(shù)列的通項公式;(3)求出數(shù)列的通項公式,由數(shù)列在時取最小值,可得出當時,,當時,,再利用參變量分離法可得出實數(shù)的取值范圍.【詳解】(1)當時,有,即,;當時,由,可得,將上述兩式相減得,,,且,所以,數(shù)列是以,以為公比的等比數(shù)列,;(2)由(1)知,,由等差數(shù)列的定義得,且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,因此,;(3)由(2)知,,,由數(shù)列在時取最小值,可得出當時,,當時,,由,得,得在時恒成立,由于數(shù)列在時單調(diào)遞減,則,此時,;由,得,得在時恒成立,由于數(shù)列在時單調(diào)遞減,則,此時,.綜上所述:實數(shù)的取值范圍是.【點睛】本題考查利用定義證明等比數(shù)列和等差數(shù)列,證明時需結(jié)合題中數(shù)列遞推式的結(jié)構(gòu)進行證明,同時也考查數(shù)列最值問題,需要結(jié)合題中條件轉(zhuǎn)化為與項的符號相關(guān)的問題,利用參變量分離法可簡化計算,考查化歸與轉(zhuǎn)化思想和運算求解能力,綜合性較強,屬于難題.20、(1)證明見解析(2)到平面的距離為【解析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點O,連結(jié)EO.因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度學習及自動駕駛應(yīng)用 課件全套 第1-10章 汽車自動駕駛技術(shù)概述 -強化學習理論及自動駕駛應(yīng)用實踐
- 汽車燈光應(yīng)急
- 檢驗科應(yīng)急演練
- 度假村自建房施工合同樣本
- 礦業(yè)安全規(guī)則承諾書
- 城市公園化糞池維修協(xié)議
- 管道安裝清包工施工合同
- 智能農(nóng)業(yè)投資指南
- 城市供氣砌體抹灰施工合同
- 圖書館建設(shè)物業(yè)合同
- 高中學生檔案表格
- 夏季反季節(jié)施工方案綠化
- 專業(yè)技術(shù)人員網(wǎng)絡(luò)安全知識提升
- 上期開特下期出特公式
- 中國藥科大藥大動力學重點總結(jié)
- 高中生物必修一學考知識總結(jié)
- 火力發(fā)電廠設(shè)計技術(shù)規(guī)程(熱控部分)
- 中醫(yī)師承學員報名申請表
- MSDS(T-35)DBE溶劑
- DFMEA模板(完整版)
- 實驗室6S管理實施細則
評論
0/150
提交評論