2024屆湖北省“荊、荊、襄、宜四地七校考試聯(lián)盟”高一下數學期末綜合測試模擬試題含解析_第1頁
2024屆湖北省“荊、荊、襄、宜四地七??荚嚶?lián)盟”高一下數學期末綜合測試模擬試題含解析_第2頁
2024屆湖北省“荊、荊、襄、宜四地七??荚嚶?lián)盟”高一下數學期末綜合測試模擬試題含解析_第3頁
2024屆湖北省“荊、荊、襄、宜四地七校考試聯(lián)盟”高一下數學期末綜合測試模擬試題含解析_第4頁
2024屆湖北省“荊、荊、襄、宜四地七校考試聯(lián)盟”高一下數學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省“荊、荊、襄、宜四地七??荚嚶?lián)盟”高一下數學期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,且,則“”是“函數有零點”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.對于數列,定義為數列的“好數”,已知某數列的“好數”,記數列的前項和為,若對任意的恒成立,則實數的取值范圍為()A. B. C. D.3.已知一幾何體的三視圖,則它的體積為()A. B. C. D.4.單位圓中,的圓心角所對的弧長為()A. B. C. D.5.與圓關于直線對稱的圓的方程為()A. B.C. D.6.等差數列{}中,=2,=7,則=()A.10 B.20 C.16 D.127.如圖,圓的半徑為1,是圓上的定點,是圓上的動點,角的始邊為射線,終邊為射線,過點作直線的垂線,垂足為,將點到直線的距離表示成的函數,則在上的圖象大致為()A. B.C. D.8.用數學歸納法證明這一不等式時,應注意必須為()A. B., C., D.,9.直線與直線平行,則()A. B.或 C. D.或10.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點,且平面,,中點軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則_________.12.已知,則13.若的兩邊長分別為和,其夾角的余弦為,則其外接圓的面積為______________;14.方程在區(qū)間上的解為___________.15.已知,,,是球的球面上的四點,,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.16.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內的人數是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等比數列的公比,前項和為,且.(1)求數列的通項公式;(2)設,求數列的前項和.18.若(1)化簡;(2)求函數的單調遞增區(qū)間.19.已知,且(1)求的值;(2)求的值.20.已知三角形的三個頂點,,.(1)求線段的中線所在直線方程;(2)求邊上的高所在的直線方程.21.己知點,直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點,且OA⊥OB.(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;(2)若直線l過點(0,2),求l的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

結合函數零點的定義,利用充分條件和必要條件的定義進行判斷,即可得出答案.【詳解】由題意,當時,,函數與有交點,故函數有零點;當有零點時,不一定取,只要滿足都符合題意.所以“”是“函數有零點”的充分不必要條件.故答案為:A【點睛】本題主要考查了函數零點的概念,以及對數函數的圖象與性質的應用,其中解答中熟記函數零點的定義,以及對數函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、B【解析】分析:由題意首先求得的通項公式,然后結合等差數列的性質得到關于k的不等式組,求解不等式組即可求得最終結果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數列{an?kn}為等差數列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質,它們考查的還是基礎數學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應萬變才是制勝法寶.3、C【解析】所求體積,故選C.4、B【解析】

將轉化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對的弧長為.故選B.【點睛】本題考查角度與弧度的轉化,同時也考查了弧長的計算,考查計算能力,屬于基礎題.5、A【解析】

設所求圓的圓心坐標為,列出方程組,求得圓心關于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標,設所求圓的圓心坐標為,則圓心關于的對稱點,滿足,解得,即所求圓的圓心坐標為,且半徑與圓相等,所以所求圓的方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準確求解點關于直線的對稱點的坐標是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、D【解析】

根據等差數列的性質可知第五項減去第三項等于公差的2倍,由=+5得到2d等于5,然后再根據等差數列的性質得到第七項等于第五項加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故選D.7、B【解析】

計算函數的表達式,對比圖像得到答案.【詳解】根據題意知:到直線的距離為:對應圖像為B故答案選B【點睛】本題考查了三角函數的應用,意在考查學生的應用能力.8、D【解析】

根據題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數學歸納法證明這一不等式時,應注意必須為,故選:.【點睛】本題考查數學歸納法的應用,屬于基礎題.9、B【解析】

兩直線平行,斜率相等;按,和三類求解.【詳解】當即時,兩直線為,,兩直線不平行,不符合題意;當時,兩直線為,兩直線不平行,不符合題意;當即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【點睛】本題考查直線平行的斜率關系,注意斜率不存在和斜率為零的情況.10、D【解析】

設的中點分別為,判斷出中點的軌跡是等邊三角形的高,由此計算出正三棱柱的邊長,進而計算出正三棱柱的體積.【詳解】設的中點分別為,連接.由于平面,所以.當時,中點為平面的中心,即的中點(設為點)處.當時,此時的中點為的中點.所以點的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點睛】本小題主要考查線面平行的有關性質,考查棱柱的體積計算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

在分式中分子分母同時除以,將代數式轉化為正切來進行計算.【詳解】由題意得,原式,故答案為.【點睛】本題考查弦的分式齊次式的計算,常利用弦化切的思想求解,一般而言,弦化切思想主要應用于以下兩種題型:(1)弦的次分式齊次式:當分式是關于角的次分式齊次式,在分子分母中同時除以,可以將分式化為切的分式來求解;(2)弦的二次整式:當代數式是關于角弦的二次整式時,先除以,將代數式轉化為關于角弦的二次分式齊次式,然后在分式分子分母中同時除以,可實現(xiàn)弦化切.12、28【解析】試題分析:由等差數列的前n項和公式,把等價轉化為所以,然后求得a值.考點:極限及其運算13、【解析】

首先根據余弦定理求第三邊,再求其對邊的正弦值,最后根據正弦定理求半徑和面積.【詳解】設第三邊為,,解得:,設已知兩邊的夾角為,,那么,根據正弦定理可知,,外接圓的面積.故填:.【點睛】本題簡單考查了正余弦定理,考查計算能力,屬于基礎題型.14、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數求值【名師點睛】已知三角函數值求角,基本思路是通過化簡,得到角的某種三角函數值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.15、【解析】

根據三棱錐的體積可求三棱錐的側棱長,補體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因為,,兩兩垂直,,故可把三棱錐補成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點睛】幾何體的外接球、內切球問題,關鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.16、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)根據條件列出等式,求解公比后即可求解出通項公式;(2)錯位相減法求和,注意對于“錯位”的理解.【詳解】解:(1)由,得,則∴,∴數列的通項公式為.(2)由,∴,①,②①②,得,∴.【點睛】本題考查等比數列通項和求和,難度較易.對于等差乘以等比的形式的數列,求和注意選用錯位相減法.18、(1)(2)【解析】

(1)利用利用誘導公式化簡得解析式,可的結果.(2)利用余弦函數的單調性求得函數的單調遞增區(qū)間.【詳解】(1).(2)令,,的單調遞增區(qū)間為.【點睛】本題考查利用誘導公式化簡求值、求余弦函數的單調區(qū)間,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,屬于基礎題.19、(1);(2).【解析】

(1)由條件先求得然后再用二倍角公式求;(2)利用角的變換求出,在根據的范圍確定的值.【詳解】(1)因為,所以,所以,所以;(2)因為,所以因為,所以,由(1)得,所以=,因為,所以.【點睛】根據已知條件求角的步驟:(1)求角的某一個三角函數值;(2)確定角的范圍;(3)根據角的范圍寫出所求的角.在選取函數時,遵照以下原則:①已知正切函數值,選正切函數;②已知正、余弦函數值,選正弦或余弦函數;若角的范圍是,選正、余弦皆可;若角的范圍是,選余弦較好;若角的范圍為,選正弦較好.20、(1)(2).【解析】

(1)先求出BC中點的坐標,再求BC的中線所在直線的方程;(2)先求出AB的斜率,再求出邊上的高所在的直線方程.【詳解】(1)由題得BC的中點D的坐標為(2,-1),所以,所以線段的中線AD所在直線方程為即.(2)由題得,所以AB邊上的高所在直線方程為,即.【點睛】本題主要考查直線方程的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.21、(1);(2).【解析】

(1)根據題意,求得直線OB的方程,利用點到直線的距離公式求得圓心到直線OB的距離,之后應用圓中的特殊三角形,求得弦長;(2)根據題意,可判斷直線的斜率是存在的,設出其方程,與圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論