版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省天星湖中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線與直線平行,則的值為A. B. C. D.2.已知向量,,若,則銳角α為()A.45° B.60° C.75° D.30°3.某象棋俱樂部有隊員5人,其中女隊員2人,現(xiàn)隨機選派2人參加一個象棋比賽,則選出的2人中恰有1人是女隊員的概率為()A. B. C. D.4.已知直線,,若,則()A.2 B. C. D.15.記等差數(shù)列的前n項和為.若,則()A.7 B.8 C.9 D.106.過點且與點距離最大的直線方程是()A. B.C. D.7.已知函數(shù),其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是()A.函數(shù)的最小正周期為B.函數(shù)的圖象關于直線對稱C.函數(shù)在區(qū)間上單調遞增D.函數(shù)的圖像關于點對稱8.已知兩條平行直線和之間的距離等于,則實數(shù)的值為()A. B. C.或 D.9.的值為()A. B. C. D.10.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐底面半徑為1,高為,則該圓錐的側面積為_____.12.體積為8的一個正方體,其全面積與球的表面積相等,則球的體積等于________.13.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。14.不等式的解集為_________.15.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.16.已知曲線與直線交于A,B兩點,若直線OA,OB的傾斜角分別為、,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.18.已知,,且(1)求函數(shù)的解析式;(2)當時,的最小值是,求此時函數(shù)的最大值,并求出函數(shù)取得最大值時自變量的值19.如圖,已知四棱錐,側面是正三角形,底面為邊長2的菱形,,.(1)設平面平面,求證:;(2)求多面體的體積;(3)求二面角的余弦值.20.(1)已知圓經過和兩點,若圓心在直線上,求圓的方程;(2)求過點、和的圓的方程.21.已知函數(shù).(1)求函數(shù)的最小正周期和單調增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由兩直線平行可知系數(shù)滿足考點:兩直線平行的判定2、D【解析】
根據(jù)向量的平行的坐標表示,列出等式,即可求出.【詳解】因為,所以,又為銳角,因此,即,故選D.【點睛】本題主要考查向量平行的坐標表示.3、B【解析】
直接利用概率公式計算得到答案.【詳解】故選:【點睛】本題考查了概率的計算,屬于簡單題.4、D【解析】
當為,為,若,則,由此求解即可【詳解】由題,因為,所以,即,故選:D【點睛】本題考查已知直線垂直求參數(shù)問題,屬于基礎題5、D【解析】
由可得值,可得可得答案.【詳解】解:由,可得,所以,從而,故選D.【點睛】本題主要考察等差數(shù)列的性質及等差數(shù)列前n項的和,由得出的值是解題的關鍵.6、C【解析】
過點且與點距離最大的直線滿足:,根據(jù)兩直線互相垂直,斜率的關系可以求出直線的斜率,寫出點斜式方程,最后化成一般方程,選出正確的選項.【詳解】因為過點且與點距離最大的直線滿足:,所以有,而,所以直線方程為,故本題選C.【點睛】本題考查了直線與直線垂直時斜率的性質,考查了數(shù)學運算能力.7、C【解析】
本題首先可根據(jù)相鄰的兩個對稱中心之間的距離為來確定的值,然后根據(jù)直線是對稱軸以及即可確定的值,解出函數(shù)的解析式之后,通過三角函數(shù)的性質求出最小正周期、對稱軸、單調遞增區(qū)間以及對稱中心,即可得出結果.【詳解】圖像相鄰的兩個對稱中心之間的距離為,即函數(shù)的周期為,由得,所以,又是一條對稱軸,所以,,得,又,得,所以.最小正周期,項錯誤;令,,得對稱軸方程為,,選項錯誤;由,,得單調遞增區(qū)間為,,項中的區(qū)間對應,故正確;由,,得對稱中心的坐標為,,選項錯誤,綜上所述,故選C.【點睛】本題考查根據(jù)三角函數(shù)圖像性質來求三角函數(shù)解析式以及根據(jù)三角函數(shù)解析式得出三角函數(shù)的相關性質,考查對函數(shù)的相關性質的理解,考查推理能力,是中檔題.8、C【解析】
利用兩條平行線之間的距離公式可求的值.【詳解】兩條平行線之間的距離為,故或,故選C.【點睛】一般地,平行線和之間的距離為,應用該公式時注意前面的系數(shù)要相等.9、C【解析】試題分析:.考點:誘導公式.10、A【解析】
根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【點睛】本題考查相等向量、垂直關系的向量表示,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知求得母線長,代入圓錐側面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側面積S=πrl=2π.故答案為:2π.【點睛】本題考查圓錐側面積的求法,側面積公式S=πrl.12、【解析】
由體積為的一個正方體,棱長為,全面積為,則,,球的體積為,故答案為.考點:正方體與球的表面積及體積的算法.13、【解析】
根據(jù)球的表面積計算出球的半徑.利用勾股定理計算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時,三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【點睛】本小題主要考查外接球有關計算,考查三棱錐體積的最大值的計算,屬于中檔題.14、【解析】
利用兩個數(shù)的商是正數(shù)等價于兩個數(shù)同號;將已知的分式不等式轉化為整式不等式,求出解集.【詳解】同解于解得或故答案為:【點睛】本題考查解分式不等式,利用等價變形轉化為整式不等式是解題的關鍵.15、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.16、【解析】
曲線即圓曲線的上半部分,因為圓是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達定理與直線方程代入即可求解.【詳解】由消去得,則,由三角函數(shù)的定義得故.【點睛】本題主要考查三角函數(shù)的定義,直線與圓的應用.此題關鍵在于曲線的識別與三角函數(shù)定義的應用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(I)利用向量數(shù)量積的運算,化簡,得到,由此求得的大小.(II)先利用向量的數(shù)量積運算,求得的值,由此求得的值.【詳解】解:(Ⅰ)因為,所以.所以.因為,所以.(Ⅱ)因為,由已知,,所以.所以.【點睛】本小題主要考查向量數(shù)量積運算,考查向量夾角的計算,考查向量模的求法,屬于基礎題.18、(1)(2)【解析】試題分析:(1)由向量的數(shù)量積運算代入點的坐標得到三角函數(shù)式,運用三角函數(shù)基本公式化簡為的形式;(2)由定義域可得到的范圍,結合函數(shù)單調性求得函數(shù)最值及對應的自變量值試題解析:(1)即(2)由,,,,,此時,考點:1.向量的數(shù)量積運算;2.三角函數(shù)化簡及三角函數(shù)性質19、(1)證明見解析;(2);(3).【解析】
(1)由,證得平面,再由線面平行的性質,即可得到;(2)取中點,連結,推得,,得到平面,再由多面體的體積,結合體積公式,即可求解;(3)由,設的中點為,連結,推得,從而得到就是二面角的平面角,由此可求得二面角的余弦值.【詳解】證明:(1)因為平面平面,所以平面,又平面,平面平面,所以;(2)取中點,連結,由得,同理,又因為,所以平面,在中,,所以,所以多面體的體積;(3)由題意知,底面為邊長2的菱形,,所以,又,所以,設的中點為,連結,由側面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值為.【點睛】本題主要考查了線面位置關系的判定,多面體的體積的計算,以及二面角的求解,其中解答中熟記線面位置關系的判定與性質,以及而面積的平面角的定義,準確計算是解答的關鍵,著重考查了推理與論證能力,屬于中檔試題.20、(1);(2)【解析】
(1)由直線AB的斜率,中點坐標,寫出線段AB中垂線的直線方程,與直線x-2y-3=0聯(lián)立即可求出交點的坐標即為圓心的坐標,再根據(jù)兩點間的距離公式求出圓心到點A的距離即為圓的半徑,根據(jù)圓心坐標與半徑寫出圓的標準方程即可;(2)設圓的方程為,代入題中三點坐標,列方程組求解即可【詳解】(1)由點和點可得,線段的中垂線方程為.∵圓經過和兩點,圓心在直線上,∴,解得,即所求圓的圓心,∴半徑,所求圓的方程為;(2)設圓的方程為,∵圓過點、和,∴列方程組得解得,∴圓的方程為.【點睛】本題考查了圓的方程求解,考查了待定系數(shù)法及運算能力,屬于中檔題.21、(1)最小正周期為,單調遞增區(qū)間為;(2)當時,函數(shù)取最小值.【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 告別沈從文課件
- 少兒街舞 課件
- 籃球課件 英語
- 第二講 寫寫身邊的人(看圖寫話教學)-二年級語文上冊(統(tǒng)編版)
- 勝似親人 課件
- 西京學院《影視美學》2021-2022學年第一學期期末試卷
- 關于情緒 課件
- 三角形的高 (微課課件)
- 西京學院《紀錄片創(chuàng)作》2022-2023學年第一學期期末試卷
- 西京學院《采訪與寫作》2021-2022學年第一學期期末試卷
- 用電檢查培訓
- 弘揚偉大長征精神圖文.ppt
- 西南石油大學 《油藏工程》教學提綱+復習提綱)PPT精品文檔
- 六年級數(shù)學下冊 圓錐的體積教案 西師大版 教案
- 企業(yè)質量管理體系程序文件(全套)
- 莫迪溫產品介紹
- 天津市寶坻區(qū)土地利用總體規(guī)劃(2015-2020年)
- 中國早產兒視網(wǎng)膜病變篩查指南(2014年)版
- 話劇《阮玲玉》
- 電子商務十大風云人物
- [專業(yè)英語考試復習資料]專業(yè)八級分類模擬41
評論
0/150
提交評論