版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆廣東深圳龍文教育數(shù)學(xué)高一下期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.2.在投資生產(chǎn)產(chǎn)品時(shí),每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時(shí),每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬3.過兩點(diǎn),的直線的傾斜角為,則實(shí)數(shù)=()A.-1 B.1C. D.4.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點(diǎn),若,則線段長度的取值范圍為()A. B.C. D.5.等比數(shù)列中,,,則公比等于()A.2 B.3 C. D.6.某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”.現(xiàn)已知當(dāng)時(shí),該命題不成立,那么()A.當(dāng)時(shí),該命題不成立 B.當(dāng)時(shí),該命題成立C.當(dāng)時(shí),該命題不成立 D.當(dāng)時(shí),該命題成立7.已知為不同的平面,為不同的直線則下列選項(xiàng)正確的是()A.若,則 B.若,則C.若,則 D.若,則8.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.9.對變量有觀測數(shù)據(jù),得散點(diǎn)圖(1);對變量有觀測數(shù)據(jù)(,得散點(diǎn)圖(2),由這兩個散點(diǎn)圖可以判斷()A.變量與正相關(guān),與正相關(guān) B.變量與正相關(guān),與負(fù)相關(guān)C.變量與負(fù)相關(guān),與正相關(guān) D.變量與負(fù)相關(guān),與負(fù)相關(guān)10.已知一個扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,,則__________.12.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.13.如圖,正方體的棱長為2,點(diǎn)在正方形的邊界及其內(nèi)部運(yùn)動,平面區(qū)域由所有滿足的點(diǎn)組成,則的面積是__________.14.四名學(xué)生按任意次序站成一排,則和都在邊上的概率是___________.15.若關(guān)于x的不等式的解集是,則_________.16.函數(shù)的反函數(shù)為____________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;(3)若,數(shù)列的前項(xiàng)和為,對任意的,都有,求實(shí)數(shù)的取值范圍.18.如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由19.如圖,在四邊形中,.(1)若為等邊三角形,且是的中點(diǎn),求.(2)若,,求.20.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當(dāng)取最小值時(shí),的取值.21.如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E為PD的中點(diǎn),點(diǎn)F在PC上,且.(Ⅰ)求證:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)設(shè)點(diǎn)G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點(diǎn):由圖象確定函數(shù)解析式.2、B【解析】
設(shè)生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應(yīng)作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)與直線截距的關(guān)系,進(jìn)而求出最優(yōu)解.【詳解】設(shè)生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標(biāo)函數(shù)為.由解得.使目標(biāo)函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當(dāng)直線過點(diǎn)時(shí)截距最大.此時(shí)應(yīng)作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.
故選:B.【點(diǎn)睛】在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實(shí)問題中.屬于中檔題.3、A【解析】
根據(jù)兩點(diǎn)的斜率公式及傾斜角和斜率關(guān)系,即可求得的值.【詳解】過兩點(diǎn),的直線斜率為由斜率與傾斜角關(guān)系可知即解得故選:A【點(diǎn)睛】本題考查了兩點(diǎn)間的斜率公式,直線的斜率與傾斜角關(guān)系,屬于基礎(chǔ)題.4、A【解析】
連接和,由二面角的定義得出,由結(jié)合為的中點(diǎn),可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點(diǎn)睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計(jì)算能力,屬于中等題.5、A【解析】
由題意利用等比數(shù)列的通項(xiàng)公式,求出公比的值.【詳解】解:等比數(shù)列中,,,,則公比,故選:.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
寫出命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【詳解】由逆否命題可知,命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題為“假設(shè)當(dāng)時(shí)該命題不成立,則當(dāng)時(shí)該命題也不成立”,由于當(dāng)時(shí),該命題不成立,則當(dāng)時(shí),該命題也不成立,故選:C.【點(diǎn)睛】本題考查逆否命題與原命題等價(jià)性的應(yīng)用,解題時(shí)要寫出原命題的逆否命題,結(jié)合逆否命題的等價(jià)性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.7、C【解析】
通過對ABCD逐一判斷,利用點(diǎn)線面的位置關(guān)系即可得到答案.【詳解】對于A選項(xiàng),有可能異面,故錯誤;對于B選項(xiàng),可能相交或異面,故錯誤;對于C選項(xiàng),,顯然故正確;對于D選項(xiàng),也有可能,故錯誤.所以答案選C.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,意在考查學(xué)生的空間想象能力,難度不大.8、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點(diǎn):1、平面向量基本定理;2、余弦定理的應(yīng)用.9、C【解析】
根據(jù)增大時(shí)的變化趨勢可確定結(jié)果.【詳解】圖(1)中,隨著的增大,的變化趨勢是逐漸在減小,因此變量與負(fù)相關(guān);圖(2)中,隨著的增大,的變化趨勢是逐漸在增大,因此變量與正相關(guān).故選:【點(diǎn)睛】本題考查根據(jù)散點(diǎn)圖判斷相關(guān)關(guān)系的問題,屬于基礎(chǔ)題.10、C【解析】
直接利用扇形弧長公式求解即可得到結(jié)果.【詳解】由扇形弧長公式得:本題正確選項(xiàng):【點(diǎn)睛】本題考查扇形弧長公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由等比數(shù)列前n項(xiàng)公式求出已知等式左邊的和,再求解.【詳解】易知不合題意,∴,若,則,不合題意,∴,,∴,,又,∴.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和公式,解題時(shí)需分類討論,首先對的情形進(jìn)行說明,然后按是否為1分類.12、3【解析】
根據(jù)圖象看出周期、特殊點(diǎn)的函數(shù)值,解出待定系數(shù)即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點(diǎn)睛】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。13、【解析】,所以點(diǎn)平面區(qū)域是底面內(nèi)以為圓心,以1為半徑的外面區(qū)域,則的面積是14、【解析】
寫出四名學(xué)生站成一排的所有可能情況,得出和都在邊上的情況即可求得概率.【詳解】四名學(xué)生按任意次序站成一排,所有可能的情況為:,,,,共24種情況,其中和都在邊上共有,4種情況,所以和都在邊上的概率是.故答案為:【點(diǎn)睛】此題考查古典概型,根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確求出基本事件總數(shù)和某一事件包含的基本事件個數(shù).15、-14【解析】
由不等式的解集求出對應(yīng)方程的實(shí)數(shù)根,利用根與系數(shù)的關(guān)系求出的值,從而可得結(jié)果.【詳解】不等式的解集是,所以對應(yīng)方程的實(shí)數(shù)根為和,且,由根與系數(shù)的關(guān)系得,解得,,故答案為.【點(diǎn)睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關(guān)系,以及韋達(dá)定理的應(yīng)用,屬于簡單題.16、【解析】
由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點(diǎn)睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,;(3)或.【解析】
(1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯位相減法求和,可得,化簡,即,對任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時(shí),,又,相減可得,即,則;(2)證明:,可得,可得是首項(xiàng)和公差均為1的等差數(shù)列,可得,即;(3),前n項(xiàng)和為,,相減可得,可得,,即為,即,對任意的成立,由,可得為遞減數(shù)列,即n=1時(shí)取得最大值1?2=?1,可得,即或.【點(diǎn)睛】“錯位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號;③求和時(shí)注意項(xiàng)數(shù)別出錯;④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.18、(1)證明見解析(2)(3)存在,【解析】
(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計(jì)算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過點(diǎn)C作CF∥AE交AB于點(diǎn)F,過點(diǎn)F作FP∥AD交DB于點(diǎn)P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計(jì)算的值.【詳解】(1)證明:因?yàn)闉橹悬c(diǎn),,所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平?又因?yàn)槠矫?,?2)在直角三角形中,易求,則所以四棱錐的體積為(3)存在點(diǎn),使得平面,且=3:4過點(diǎn)作交于點(diǎn),則.過點(diǎn)作交于點(diǎn),連接,則.又因?yàn)槠矫嫫矫?,所以平?同理平面.又因?yàn)椋云矫嫫矫?因?yàn)槠矫?,所以平面,由,則=3:4【點(diǎn)睛】本題考查了面面垂直的性質(zhì),面面平行性質(zhì),棱錐的體積計(jì)算,屬于中檔題.19、(1)(2)【解析】
(1)先由題意,結(jié)合平面向量基本定理,用表示出,再由向量的數(shù)量積運(yùn)算,即可得出結(jié)果;(2)先由向量數(shù)量積的運(yùn)算,求出,再由,結(jié)合題中條件,即可得出結(jié)果.【詳解】解:(1)為等邊三角形,且,又是中點(diǎn),又(2)由題意:,,,又【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算,熟記平面向量基本定理,以及向量數(shù)量積的運(yùn)算法則即可,屬于??碱}型.20、(1);(2),【解析】
(1)先化簡,再求最小正周期;(2)由,得,再結(jié)合的函數(shù)圖像求最小值.【詳解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以當(dāng)時(shí),的最小值為,即時(shí),的最小值為.【點(diǎn)睛】本題考查三角恒等變換,考查三角函數(shù)圖像的性質(zhì)應(yīng)用,屬于中檔題.21、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)建立空間直角坐標(biāo)系,結(jié)合兩個半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得點(diǎn)G的坐標(biāo),然后結(jié)合平面的法向量和直線AG的方向向量可判斷直線是否在平面內(nèi).【詳解】(Ⅰ)由于PA⊥平面ABCD,CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西京學(xué)院《景觀小品設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《電力電子技術(shù)》2022-2023學(xué)年期末試卷
- 西華師范大學(xué)《篆刻技法》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《影視敘事藝術(shù)研究》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《西方行政學(xué)說史》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《區(qū)域分析方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《教師書寫與板書設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 版油氣開發(fā)專業(yè)危害因素辨識與風(fēng)險(xiǎn)防控?專項(xiàng)測試題及答案
- 交通運(yùn)輸綜合執(zhí)法(單多選)復(fù)習(xí)試題及答案
- 2024年專用設(shè)備行業(yè)政策分析:專用設(shè)備行業(yè)標(biāo)準(zhǔn)保障行業(yè)穩(wěn)定發(fā)展
- 吉林省長春市東北師大附中2019-2020上學(xué)期——九年級數(shù)學(xué)大練習(xí)題試卷
- 新能源汽車充電樁運(yùn)營平臺建設(shè)商業(yè)計(jì)劃書
- 圖形創(chuàng)意-表現(xiàn)手法(課堂PPT)課件
- 北京某進(jìn)修護(hù)理匯報(bào)ppt課件
- 第8章 相關(guān)與回歸分析(新)
- 廢舊物的“新生命” 課件
- 三菱培訓(xùn)教程手冊合集l快速入門篇
- 污水處理廠關(guān)鍵部位施工監(jiān)理控制要點(diǎn)
- 定語從句講解公開課(22張ppt)
- 幼兒園大班主題《有用的植物》個別學(xué)習(xí)
- 手工焊接作業(yè)指導(dǎo)書
評論
0/150
提交評論