向量的減法運(yùn)算 高一數(shù)學(xué)人教A版(2019)必修二導(dǎo)學(xué)案(原卷+答案)_第1頁(yè)
向量的減法運(yùn)算 高一數(shù)學(xué)人教A版(2019)必修二導(dǎo)學(xué)案(原卷+答案)_第2頁(yè)
向量的減法運(yùn)算 高一數(shù)學(xué)人教A版(2019)必修二導(dǎo)學(xué)案(原卷+答案)_第3頁(yè)
向量的減法運(yùn)算 高一數(shù)學(xué)人教A版(2019)必修二導(dǎo)學(xué)案(原卷+答案)_第4頁(yè)
向量的減法運(yùn)算 高一數(shù)學(xué)人教A版(2019)必修二導(dǎo)學(xué)案(原卷+答案)_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

必修二6.2.2向量的減法運(yùn)算導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】(1)借助實(shí)例和平面向量的幾何表示,理解相反向量的含義,向量減法的意義.(2)掌握向量減法的運(yùn)算及其幾何意義.(3)能熟練地進(jìn)行向量的加、減綜合運(yùn)算.題型1向量的減法及其幾何意義【問(wèn)題探究】(1)在數(shù)的運(yùn)算中,減法是加法的逆運(yùn)算,其運(yùn)算法則是“減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)”.類比數(shù)的減法,向量的減法和加法有什么關(guān)系?如何定義向量的減法法則?(2)已知向量a,b,則a-b的幾何意義是什么?例1如圖所示,已知向量a,b,c,求作向量a-b-c.跟蹤訓(xùn)練1如圖所示,已知向量a,b,c不共線,求作向量a+b-c.題型2向量加減法的運(yùn)算例2化簡(jiǎn)下列各式:(1)(OA?OB)-(2)(BA?BC)-((3)(AC+BO+1.向量減法運(yùn)算的常用方法2.向量加減法化簡(jiǎn)的兩種策略(1)首尾相連且為和.(2)起點(diǎn)相同且為差.解題時(shí)要注意觀察是否有這兩種形式,同時(shí)注意逆向應(yīng)用.跟蹤訓(xùn)練2化簡(jiǎn)下列各式:(1)OM?(2)(AD?BM)+(題型3向量加減法的綜合應(yīng)用例3如圖所示,四邊形ACDE是平行四邊形,點(diǎn)B是該平行四邊形外一點(diǎn),且AB=a,AC=b,AE=c,試用向量a,b,c表示向量CD,一題多變本例條件不變,試用向量a,b,c表示向量BE、CE.用已知向量表示未知向量的方法(1)解決此類問(wèn)題要充分利用平面幾何知識(shí),靈活運(yùn)用平行四邊形法則和三角形法則.(2)表示向量時(shí)要考慮以下問(wèn)題:它是否是某個(gè)平行四邊形的對(duì)角線;是否可以找到由起點(diǎn)到終點(diǎn)的恰當(dāng)途徑;它的起點(diǎn)和終點(diǎn)是否是兩個(gè)有共同起點(diǎn)的向量的終點(diǎn).(3)必要時(shí)可以直接用向量求和的多邊形法則.跟蹤訓(xùn)練3如圖所示,已知O到平行四邊形的三個(gè)頂點(diǎn)A,B,C的向量分別為a,b,c,則OD=________(用a,b,c表示).隨堂練習(xí)1.在平行四邊形ABCD中,AC?A.ABB.BAC.CDD.DB2.有下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b);⑥a-(-a)=0.正確的個(gè)數(shù)是()A.3B.4C.5D.63.化簡(jiǎn)AC?A.ABB.DAC.BCD.04.如圖,已知ABCDEF是一正六邊形,O是它的中心,其中OB=b,OC=c,則EF=________.參考答案問(wèn)題探究提示:(1)向量的減法可以看作是向量加法的逆運(yùn)算:即減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量.(2)表示為從向量b的終點(diǎn)指向向量a的終點(diǎn)的向量.例1解析:方法一先作a-b,再作a-b-c即可.如圖①所示,以A為起點(diǎn)分別作向量AB和AC,使AB=a,AC=b.連接CB,得向量CB=a-b,再以C為起點(diǎn)作向量CD,使CD=c,連接DB,得向量DB.則向量DB即為所求作的向量a-b-c.方法二先作-b,-c,再作a+(-b)+(-c),如圖②.(1)作AB=-b和BC=-c;(2)作OA=a,則OC=a-b-c.跟蹤訓(xùn)練1解析:方法一(幾何意義法)如圖①所示,在平面內(nèi)任取一點(diǎn)O,作OA=a,AB=b,則OB=a+b,再作OC=c,則CB=a+b-c.方法二(定義法)如圖②所示,在平面內(nèi)任取一點(diǎn)O,作OA=a,AB=b,則OB=a+b,再作BC=-c,連接OC,則OC=a+b-c.例2解析:(1)(OA?OB)-BC=BA?(2)(BA?BC)-(ED?EC)=(3)(AC+BO+=AC+BA?=(BA+AC=BC+(DB?DC)=跟蹤訓(xùn)練2解析:(1)OM?ON+MP?NA=(2)(AD?BM)+(BC=AD+(MB+=AD+0=AD.例3解析:因?yàn)樗倪呅蜛CDE是平行四邊形,所以CD=AE=c,BC=AC?AB=b-故BD=BC+CD=b-a+一題多變解析:BE=AE?AB=c-a,CE=AE?AC=跟蹤訓(xùn)練3解析:OD=OA+AD=OA+BC=OA+OC?答案:a-b+c[隨堂練習(xí)]1.解析:AC?AD=DC=答案:A2.解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論