![湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view3/M03/06/2D/wKhkFmZnLl-ARTq6AAIC-SCsBMg115.jpg)
![湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view3/M03/06/2D/wKhkFmZnLl-ARTq6AAIC-SCsBMg1152.jpg)
![湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view3/M03/06/2D/wKhkFmZnLl-ARTq6AAIC-SCsBMg1153.jpg)
![湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view3/M03/06/2D/wKhkFmZnLl-ARTq6AAIC-SCsBMg1154.jpg)
![湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view3/M03/06/2D/wKhkFmZnLl-ARTq6AAIC-SCsBMg1155.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省華中師大一附中2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,,則的外接圓半徑為()A.1 B.2 C. D.2.已知是圓的一條弦,,則()A. B. C. D.與圓的半徑有關(guān)3.已知直線過(guò)點(diǎn),且在縱坐標(biāo)軸上的截距為橫坐標(biāo)軸上的截距的兩倍,則直線的方程為()A. B.C.或 D.或4.已知集合,,則A. B. C. D.5.已知函數(shù)的最小正周期為,若,則的最小值為()A. B. C. D.6.連續(xù)擲兩次骰子,分別得到的點(diǎn)數(shù)作為點(diǎn)的坐標(biāo),則點(diǎn)落在圓內(nèi)的概率為A. B. C. D.7.已知數(shù)列an滿(mǎn)足a1=1,aA.32021-18 B.320208.已知直線與圓交于M,N兩點(diǎn),若,則k的值為()A. B. C. D.9.已知向量,且,則與的夾角為()A. B. C. D.10.若將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,平移后的圖象關(guān)于點(diǎn)對(duì)稱(chēng),則函數(shù)在上的最小值是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在棱長(zhǎng)均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長(zhǎng)的最小值為_(kāi)_______.12.已知數(shù)列的前n項(xiàng)和,則________.13.若6是-2和k的等比中項(xiàng),則______.14.已知無(wú)窮等比數(shù)列的前項(xiàng)和,其中為常數(shù),則________15.如圖,在△中,三個(gè)內(nèi)角、、所對(duì)的邊分別為、、,若,,為△外一點(diǎn),,,則平面四邊形面積的最大值為_(kāi)_______16.在數(shù)列中,,,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項(xiàng)滿(mǎn)足.(1)求通項(xiàng)公式;(2)若是等比數(shù)列的前項(xiàng)和,記,試用等比數(shù)列求和公式化簡(jiǎn)(用含的式子表示)18.設(shè)a為實(shí)數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實(shí)數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;(3)寫(xiě)出函數(shù)在R上的零點(diǎn)個(gè)數(shù)(不必寫(xiě)出過(guò)程).19.?dāng)?shù)列中,,(為常數(shù)).(1)若,,成等差數(shù)列,求的值;(2)是否存在,使得為等比數(shù)列?并說(shuō)明理由.20.已知正項(xiàng)等比數(shù)列滿(mǎn)足,,數(shù)列滿(mǎn)足.(1)求數(shù)列,的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和;(3)若,且對(duì)所有的正整數(shù)都有成立,求的取值范圍.21.已知,,其中,,且函數(shù)在處取得最大值.(1)求的最小值,并求出此時(shí)函數(shù)的解析式和最小正周期;(2)在(1)的條件下,先將的圖像上的所有點(diǎn)向右平移個(gè)單位,再把所得圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),然后將所得圖像上所有的點(diǎn)向下平移個(gè)單位,得到函數(shù)的圖像.若在區(qū)間上,方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;(3)在(1)的條件下,已知點(diǎn)P是函數(shù)圖像上的任意一點(diǎn),點(diǎn)Q為函數(shù)圖像上的一點(diǎn),點(diǎn),且滿(mǎn)足,求的解集.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由同角三角函數(shù)關(guān)系式,先求得.再結(jié)合正弦定理即可求得的外接圓半徑.【詳解】中,由同角三角函數(shù)關(guān)系式可得由正弦定理可得所以,即的外接圓半徑為1故選:A【點(diǎn)睛】本題考查了同角三角函數(shù)關(guān)系式的應(yīng)用,正弦定理求三角形外接圓半徑,屬于基礎(chǔ)題.2、C【解析】
由數(shù)量積的幾何意義,利用外心的幾何特征計(jì)算即可得解.【詳解】是圓的一條弦,易知在方向上的投影恰好為,所以=||||==2.故選C.【點(diǎn)睛】本題考查了數(shù)量積的運(yùn)算,利用定義求解要確定模長(zhǎng)及夾角,屬于基礎(chǔ)題.3、D【解析】
根據(jù)題意,分直線是否經(jīng)過(guò)原點(diǎn)2種情況討論,分別求出直線的方程,即可得答案.【詳解】根據(jù)題意,直線分2種情況討論:①當(dāng)直線過(guò)原點(diǎn)時(shí),又由直線經(jīng)過(guò)點(diǎn),所求直線方程為,整理為,②當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)得,解得,此時(shí)直線的方程為,整理為.故直線的方程為或.故選:D.【點(diǎn)睛】本題考查直線的截距式方程,注意分析直線的截距是否為0,屬于基礎(chǔ)題.4、C【解析】分析:由題意先解出集合A,進(jìn)而得到結(jié)果。詳解:由集合A得,所以故答案選C.點(diǎn)睛:本題主要考查交集的運(yùn)算,屬于基礎(chǔ)題。5、A【解析】
由正弦型函數(shù)的最小正周期可求得,得到函數(shù)解析式,從而確定函數(shù)的最大值和最小值;根據(jù)可知和必須為最大值點(diǎn)和最小值點(diǎn)才能夠滿(mǎn)足等式;利用整體對(duì)應(yīng)的方式可構(gòu)造方程組求得,;從而可知時(shí)取最小值.【詳解】由最小正周期為可得:,和分別為的最大值點(diǎn)和最小值點(diǎn)設(shè)為最大值點(diǎn),為最小值點(diǎn),當(dāng)時(shí),本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)性質(zhì)的綜合應(yīng)用,涉及到正弦型函數(shù)最小正周期和函數(shù)值域的求解;關(guān)鍵是能夠根據(jù)函數(shù)的最值確定和為最值點(diǎn),從而利用整體對(duì)應(yīng)的方式求得結(jié)果.6、B【解析】
由拋擲兩枚骰子得到點(diǎn)的坐標(biāo)共有36種,再利用列舉法求得點(diǎn)落在圓內(nèi)所包含的基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】由題意知,試驗(yàn)發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)作為點(diǎn)P的坐標(biāo),共有種結(jié)果,而滿(mǎn)足條件的事件是點(diǎn)P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點(diǎn)睛】本題主要考查的是古典概型及其概率計(jì)算公式.,屬于基礎(chǔ)題.解題時(shí)要準(zhǔn)確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù),令古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.7、B【解析】
由題意得出3n+1-12<an+2【詳解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【點(diǎn)睛】本題考查數(shù)列項(xiàng)的計(jì)算,考查累加法的應(yīng)用,解題的關(guān)鍵就是根據(jù)題中條件構(gòu)造出等式an+28、C【解析】
先求得圓心到直線的距離,再根據(jù)圓的弦長(zhǎng)公式求解.【詳解】圓心到直線的距離為:由圓的弦長(zhǎng)公式:得解得故選:C【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9、D【解析】
直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設(shè)與的夾角為,由,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積公式.10、C【解析】
由題意得,故得平移后的解析式為,根據(jù)所的圖象關(guān)于點(diǎn)對(duì)稱(chēng)可求得,從而可得,進(jìn)而可得所求最小值.【詳解】由題意得,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度所得圖象對(duì)應(yīng)的解析式為,因?yàn)槠揭坪蟮膱D象關(guān)于點(diǎn)對(duì)稱(chēng),所以,故,又,所以.所以,由得,所以當(dāng)或,即或時(shí),函數(shù)取得最小值,且最小值為.故選C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的綜合應(yīng)用,解題的關(guān)鍵是求出參數(shù)的值,容易出現(xiàn)的錯(cuò)誤是函數(shù)圖象平移時(shí)弄錯(cuò)平移的方向和平移量,此時(shí)需要注意在水平方向上的平移或伸縮只是對(duì)變量而言的.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
易證明中,且周長(zhǎng)為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長(zhǎng)均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長(zhǎng)為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長(zhǎng)的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問(wèn)題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.12、【解析】
先利用求出,在利用裂項(xiàng)求和即可.【詳解】解:當(dāng)時(shí),,當(dāng)時(shí),,綜上,,,,故答案為:.【點(diǎn)睛】本題考查和的關(guān)系求通項(xiàng)公式,以及裂項(xiàng)求和,是基礎(chǔ)題.13、-18【解析】
根據(jù)等比中項(xiàng)的性質(zhì),列出等式可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,,得.故答案為:-18【點(diǎn)睛】本題主要考查等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.14、1【解析】
根據(jù)等比數(shù)列的前項(xiàng)和公式,求得,再結(jié)合極限的運(yùn)算,即可求解.【詳解】由題意,等比數(shù)列前項(xiàng)和公式,可得,又由,所以,所以,可得.故答案為:.【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和公式的應(yīng)用,以及熟練的極限的計(jì)算,其中解答中根據(jù)等比數(shù)列的前項(xiàng)和公式,求得的值,結(jié)合極限的運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意和正弦定理,化簡(jiǎn)得,進(jìn)而得到,在中,由余弦定理,求得,進(jìn)而得到,,得出四邊形的面積為,再結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,在中,因?yàn)?,所以,可?即,所以,所以,又因?yàn)?,可得,所以,?因?yàn)?,所以,在中,,由余弦定理,可得,又因?yàn)?,所以為等腰直角三角形,所以,又因?yàn)?,所以四邊形的面積為,當(dāng)時(shí),四邊形的面積有最大值,最大值為.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.16、16【解析】
依次代入即可求得結(jié)果.【詳解】令,則;令,則;令,則;令,則本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項(xiàng),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)觀察式子特點(diǎn)可知,只有2,4,8三項(xiàng)符合等比數(shù)列特征,再根據(jù)題設(shè)條件求解即可;(2)根據(jù)等比數(shù)列通項(xiàng)公式表示出,再采用分組求和法化簡(jiǎn)的表達(dá)式即可【詳解】(1)由題可知,只有2,4,8三項(xiàng)符合等比數(shù)列特征,又,故,故,;(2),,所以【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的求法,等比數(shù)列前項(xiàng)和公式的用法,分組求和法的應(yīng)用,屬于中檔題18、(1)(2)不存在這樣的實(shí)數(shù),理由見(jiàn)解析(3)見(jiàn)解析【解析】
(1)代入的值,通過(guò)討論的范圍,求出不等式的解集即可;(2)通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過(guò)討論的范圍,判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可【詳解】(1)當(dāng)時(shí),,則當(dāng)時(shí),,解得或,故;當(dāng)時(shí),,解集為,綜上,的解集為(2),顯然,,①當(dāng)時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)楹瘮?shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實(shí)數(shù);②當(dāng)時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)楹瘮?shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實(shí)數(shù);③當(dāng)時(shí),則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實(shí)數(shù)(3)當(dāng)或時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為1;當(dāng)或時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為2;當(dāng)時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為3【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點(diǎn)個(gè)數(shù),著重考查分類(lèi)討論思想19、(Ⅰ)p=1;(Ⅱ)存在實(shí)數(shù),使得{an}為等比數(shù)列【解析】
(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差數(shù)列列式求p的值;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,可得,求解p值,驗(yàn)證得答案.【詳解】(Ⅰ)由a1=1,,得,,則,,,.由,,a4成等差數(shù)列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,則,即,則1p=p+1,即p=1.此時(shí),,∴,而,又,所以,而,且,∴存在實(shí)數(shù),使得{an}為以1為首項(xiàng),以1為公比的等比數(shù)列.【點(diǎn)睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的性質(zhì),是中檔題.20、(1),;(2);(3).【解析】
(1)設(shè)等比數(shù)列的公比為,則,根據(jù)條件可求出的值,利用等比數(shù)列的通項(xiàng)公式可求出,再由對(duì)數(shù)的運(yùn)算可求出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,然后利用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和為;(3)利用數(shù)列單調(diào)性的定義求出數(shù)列最大項(xiàng)的值為,由題意得出關(guān)于的不等式對(duì)任意的恒成立,然后利用參變量分離法得出,并利用基本不等式求出在時(shí)的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)等比數(shù)列的公比為,則,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,則有.所以,數(shù)列是單調(diào)遞減數(shù)列,則數(shù)列的最大項(xiàng)為.由題意可知,關(guān)于的不等式對(duì)任意的恒成立,.由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則在時(shí)的最小值為,,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的求解,考查錯(cuò)位相減求和法以及數(shù)列不等式恒成立問(wèn)題,涉及數(shù)列最大項(xiàng)的問(wèn)題,一般利用數(shù)列單調(diào)性的定義來(lái)求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.21、(1)的最小值為1,,,(2)(3)原不等式的解集為【解析】
(1)先將化成正弦型,然后利用在處取得最大值求出,然后即可得到的解析式和周期(2)先根據(jù)圖象的變換得到,然后畫(huà)出在區(qū)間上的圖象,條件轉(zhuǎn)化為的圖象與直線有兩個(gè)交點(diǎn)即可(3)利用坐標(biāo)的對(duì)應(yīng)關(guān)系式,求出的函數(shù)的關(guān)系式,進(jìn)一步利用三角不等式的應(yīng)用求出結(jié)果.【詳解】(1)因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025會(huì)計(jì)基礎(chǔ)知識(shí)重點(diǎn):融資租賃合同
- 2025池塘清淤工程的施工合同
- 9 知法守法 依法維權(quán) 依法維權(quán)有途徑(說(shuō)課稿)-部編版道德與法治六年級(jí)上冊(cè)
- 21 淡水資源 說(shuō)課稿-2024-2025學(xué)年科學(xué)三年級(jí)上冊(cè)青島版
- 2025法律法規(guī)工傷員工續(xù)簽合同問(wèn)題 管理資料
- 6將相和(第一課時(shí))說(shuō)課稿-2024-2025學(xué)年五年級(jí)上冊(cè)語(yǔ)文統(tǒng)編版
- 農(nóng)村荒山承包合同范本
- 硬件維護(hù)投標(biāo)方案
- 2023二年級(jí)數(shù)學(xué)下冊(cè) 四 認(rèn)識(shí)萬(wàn)以?xún)?nèi)的數(shù)第8課時(shí) 近似數(shù)說(shuō)課稿 蘇教版001
- Unit 1 Making friends PartA Let's talk(說(shuō)課稿)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 語(yǔ)文-百師聯(lián)盟2025屆高三一輪復(fù)習(xí)聯(lián)考(五)試題和答案
- 地理-山東省濰坊市、臨沂市2024-2025學(xué)年度2025屆高三上學(xué)期期末質(zhì)量檢測(cè)試題和答案
- 正面上手發(fā)球技術(shù) 說(shuō)課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- 佛山市普通高中2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析
- 事故隱患排查治理情況月統(tǒng)計(jì)分析表
- 永磁直流(汽車(chē))電機(jī)計(jì)算程序
- 國(guó)家電網(wǎng)招聘2025-企業(yè)文化復(fù)習(xí)試題含答案
- 頸部瘢痕攣縮畸形治療
- 貴州省貴陽(yáng)市2023-2024學(xué)年五年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 醫(yī)院物業(yè)服務(wù)組織機(jī)構(gòu)及人員的配備、培訓(xùn)管理方案
- 端午做香囊課件
評(píng)論
0/150
提交評(píng)論