版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省勐??h第三中學高一下數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個正四棱錐的底面邊長為2,高為,則該正四棱錐的全面積為A.8 B.12 C.16 D.202.在中,角,,所對的邊分別為,,,若,,,則的值為()A. B. C. D.3.圓與圓的位置關系為()A.相交 B.相離 C.相切 D.內含4.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.5.已知向量,,若與的夾角為,則()A.2 B. C. D.16.在中,,點是內(包括邊界)的一動點,且,則的最大值是()A. B. C. D.7.若圓與圓相切,則實數(shù)()A.9 B.-11 C.-11或-9 D.9或-118.已知函數(shù)在時取最大值,在是取最小值,則以下各式:①;②;③可能成立的個數(shù)是()A.0 B.1 C.2 D.39.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.10.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解集是___________12.一個社會調查機構就某地居民收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫出了如圖所示的頻率分布直方圖,現(xiàn)要從這10000人中再用分層抽樣的方法抽出100人作進一步調查,則月收入在(元)內的應抽出___人.13.已知,,則______,______.14.在平面直角坐標系中,圓的方程為.若直線上存在一點,使過所作的圓的兩條切線相互垂直,則實數(shù)的取值范圍是______.15.已知a,b為常數(shù),若,則______;16.已知一個扇形的周長為4,則扇形面積的最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)在中,角所對的邊分別為,若,且,求周長的取值范圍.18.已知小島A的周圍38海里內有暗礁,船正向南航行,在B處測得小島A在船的南偏東30°,航行30海里后在C處測得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,問有無觸礁的危險?19.將正弦曲線如何變換可以得到函數(shù)的圖像,請寫出變換過程,并畫出一個周期的閉區(qū)間的函數(shù)簡圖.20.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.21.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先求側面三角形的斜高,再求該正四棱錐的全面積.【詳解】由題得側面三角形的斜高為,所以該四棱錐的全面積為.故選B【點睛】本題主要考查幾何體的邊長的計算和全面積的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力.2、B【解析】
先利用面積公式得到,再利用余弦定理得到【詳解】余弦定理:故選B【點睛】本題考查了面積公式和余弦定理,意在考查學生的計算能力.3、B【解析】
首先把兩個圓的一般方程轉化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關系是相離.故選:B【點睛】本題主要考查圓與圓的位置關系,比較圓心距和半徑的關系是解決本題的關鍵,屬于簡單題.4、A【解析】
根據(jù)等比中項定義可得;利用和表示出等式,可構造方程求得;利用等差數(shù)列求和公式求得結果.【詳解】由題意得:設等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應用;關鍵是能夠構造方程求出公差,屬于??碱}型.5、B【解析】
先計算與的模,再根據(jù)向量數(shù)量積的性質即可計算求值.【詳解】因為,,所以,.又,所以,故選B.【點睛】本題主要考查了向量的坐標運算,向量的數(shù)量積,向量的模的計算,屬于中檔題.6、B【解析】
根據(jù)分析得出點的軌跡為線段,結合圖形即可得到的最大值.【詳解】如圖:取,,,點是內(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【點睛】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結合處理可以避免純粹的計算,降低難度.7、D【解析】
分別討論兩圓內切或外切,圓心距和半徑之間的關系即可得出結果.【詳解】圓的圓心坐標為,半徑;圓的圓心坐標為,半徑,討論:當圓與圓外切時,,所以;當圓與圓內切時,,所以,綜上,或.【點睛】本題主要考查圓與圓位置關系,由兩圓相切求參數(shù)的值,屬于基礎題型.8、A【解析】
由余弦函數(shù)性質得,(),解出后,計算,可知三個等式都不可能成立.【詳解】由題意,(),解得,,,,三個都不可能成立,正確個數(shù)為1.故選A.【點睛】本題考查余弦函數(shù)的圖象與性質,解題時要注意對中的整數(shù)要用不同的字母表示,否則可能出現(xiàn)遺漏,出現(xiàn)錯誤.9、D【解析】
根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關鍵.10、D【解析】
寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球為,兩個紅球為,則任取兩球的所有等可能結果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因為,所以事件與事件互為對立事件.【點睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
方程的根等價于或,分別求兩個三角方程的根可得答案.【詳解】方程或,所以或,所以或.故答案為:或.【點睛】本題考查三角方程的求解,求解時可利用單位圓中的三角函數(shù)線,注意終邊相同角的表示,考查運算求解能力和數(shù)形結合思想的運用.12、25【解析】由直方圖可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分層抽樣應抽出人.故答案為25.13、【解析】
由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點睛】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.14、【解析】試題分析:記兩個切點為,則由于,因此四邊形是正方形,,圓標準方程為,,,于是圓心直線的距離不大于,,解得.考點:直線和圓的位置關系.15、2【解析】
根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計算出的值,由此可計算出的值.【詳解】因為,所以,又因為,所以,所以.故答案為:.【點睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.16、1【解析】
表示出扇形的面積,利用二次函數(shù)的單調性即可得出.【詳解】設扇形的半徑為,圓心角為,則弧長,,即,該扇形的面積,當且僅當時取等號.該扇形的面積的最大值為.故答案:.【點睛】本題考查了弧長公式與扇形的面積計算公式、二次函數(shù)的單調性,考查了計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)首先根據(jù)周期為,得到,再根據(jù)圖象的平移變換即可得到的解析式.(2)根據(jù)得到,根據(jù)余弦定理得到,根據(jù)基本不等式即可得到,再求周長的取值范圍即可.【詳解】(1)周期,,.將的圖象向右平移個單位長度,再向上平移個單位長度得到.所以.(2),.因為,所以,..因為,所以.所以,即,.所以.【點睛】本題第一問考查三角函數(shù)的周期和平移變換,第二問考查了余弦定理,同時還考查了基本不等式,屬于中檔題.18、繼續(xù)向南航行無觸礁的危險.【解析】試題分析:要判斷船有無觸礁的危險,只要判斷A到BC的直線距離是否大于38海里就可以判斷.解:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:故于是A到BC的直線距離是Acsin45°==,大于38海里.答:繼續(xù)向南航行無觸礁的危險.考點:本題主要考查正弦定理的應用點評:分析幾何圖形的特征,運用三角形內角和定理確定角的關系,有助于應用正弦定理.19、答案見解析【解析】
利用函數(shù)函數(shù)的圖像變換規(guī)律和五點作圖法可解.【詳解】由函數(shù)的圖像上的每一點保持縱坐標不變,橫坐標擴大為原來的2倍,得到函數(shù)的圖像,
再將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像.
然后再把函數(shù)的圖像上每一個點的橫坐標保持不變,縱坐標擴大為原來的2倍,得到函數(shù)的圖像.作函數(shù)的圖像列表得0100函數(shù)圖像為【點睛】本題考查函數(shù)的圖像變換的過程敘述和作出函數(shù)的一個周期的簡圖,屬于基礎題.20、(1)證明見解析(1)1【解析】
(1)運用函數(shù)的奇偶性的定義即可得證(1)由題意可得有且只有兩個相等的實根,可得判別式為0,解方程可得所求值.【詳解】(1)證明:由函數(shù),,可得定義域為,且,可得為奇函數(shù);(1)方程只有一個實數(shù)解,即為,即△,解得舍去),則的值為1.【點睛】本題考查函數(shù)的奇偶性的判斷和二次方程有解的條件,考查方程思想和定義法,屬于基礎題.21、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導公式得結果,(Ⅱ)先根據(jù)三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年庫房轉租合同轉租條件、轉租手續(xù)及租金處理分析
- 2024年企業(yè)內部審計保密協(xié)議
- 2024年度企業(yè)社會責任報告合同
- 2024年度住宅小區(qū)木門安裝工程合同
- 2024年度許可使用合同(商標)
- 腰椎ct課件教學課件
- 2024北京技術合同
- 2024年大數(shù)據(jù)使用協(xié)議:數(shù)據(jù)收集、分析和應用的具體規(guī)定
- 液體密度課件教學課件
- 輿論學課件教學
- 外科視角解讀-《甲狀腺結節(jié)和分化型甲狀腺癌診治指南(第二版)》
- 會議紀要的寫作概述
- 小學生建筑科普小知識
- 一例“重度子癇前期”患者的個案護理
- 2024年安徽省皖能能源交易有限公司招聘筆試參考題庫附帶答案詳解
- 2024江蘇省南京市六校聯(lián)考高三下學期英語試題及答案
- 遼寧抗日戰(zhàn)爭的起始地
- (高清版)DZT 0207-2020 礦產地質勘查規(guī)范 硅質原料類
- 地鐵保潔服務檔案管理
- 大學生食品行業(yè)生涯發(fā)展報告
- 瓷磚店運營可行性方案
評論
0/150
提交評論