版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省玉溪市易門一中高一下數(shù)學(xué)期末監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,在矩形中,,,點(diǎn)滿足,記,,,則的大小關(guān)系為()A. B.C. D.2.在中,,則這個(gè)三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形3.若關(guān)于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,4.一支由學(xué)生組成的校樂(lè)團(tuán)有男同學(xué)48人,女同學(xué)36人,若用分層抽樣的方法從該樂(lè)團(tuán)的全體同學(xué)中抽取21人參加某項(xiàng)活動(dòng),則抽取到的男同學(xué)人數(shù)為()A.10 B.11 C.12 D.135.在中,(,,分別為角、、的對(duì)邊),則的形狀為()A.等邊三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形6.已知函數(shù),若在區(qū)間內(nèi)沒(méi)有零點(diǎn),則的取值范圍是A. B. C. D.7.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何的體積為()立方單位.A. B.C. D.8.法國(guó)學(xué)者貝特朗發(fā)現(xiàn),在研究事件A“在半徑為1的圓內(nèi)隨機(jī)地取一條弦,其長(zhǎng)度超過(guò)圓內(nèi)接等邊三角形的邊長(zhǎng)3”的概率的過(guò)程中,基于對(duì)“隨機(jī)地取一條弦”的含義的的不同理解,事件A的概率PA存在不同的容案該問(wèn)題被稱為貝特朗悖論現(xiàn)給出種解釋:若固定弦的一個(gè)端點(diǎn),另個(gè)端點(diǎn)在圓周上隨機(jī)選取,則PA.12 B.13 C.19.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.810.已知數(shù)列且是首項(xiàng)為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實(shí)數(shù)a的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若圓弧長(zhǎng)度等于圓內(nèi)接正六邊形的邊長(zhǎng),則該圓弧所對(duì)圓心角的弧度數(shù)為_(kāi)_______.12.在中,角,,所對(duì)的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為_(kāi)_____.13.設(shè)是定義在上以2為周期的偶函數(shù),已知,,則函數(shù)在上的解析式是14.設(shè)為使互不重合的平面,是互不重合的直線,給出下列四個(gè)命題:①②③④若;其中正確命題的序號(hào)為.15.在中,,,點(diǎn)為延長(zhǎng)線上一點(diǎn),,連接,則=______.16.已知為直線上一點(diǎn),過(guò)作圓的切線,則切線長(zhǎng)最短時(shí)的切線方程為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.己知向量,,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).(1)當(dāng)時(shí),求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若在有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.18.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上.(1)求點(diǎn)C的坐標(biāo);(2)求△ABC的面積.19.東莞市公交公司為了方便廣大市民出行,科學(xué)規(guī)劃公交車輛的投放,計(jì)劃在某個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車的間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,選取一天中的六個(gè)不同的時(shí)段進(jìn)行抽樣調(diào)查,經(jīng)過(guò)統(tǒng)計(jì)得到如下數(shù)據(jù):間隔時(shí)間(分鐘)81012141618等候人數(shù)(人)161923262933調(diào)查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若兩組差值的絕對(duì)值均不超過(guò)1,則稱所求的回歸方程是“理想回歸方程”.參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,(1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程;(2)判斷(1)中的方程是否是“理想回歸方程”:(3)為了使等候的乘客不超過(guò)38人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少分鐘?20.等差數(shù)列中,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.如圖所示,在三棱柱中,側(cè)棱底面,,D為的中點(diǎn),.(1)求證:平面;(2)求與所成角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
可建立合適坐標(biāo)系,表示出a,b,c的大小,運(yùn)用作差法比較大小.【詳解】以為圓心,以所在直線為軸、軸建立坐標(biāo)系,則,,,設(shè),則,,,,,,,,故選C.【點(diǎn)睛】本題主要考查學(xué)生的建模能力,意在考查學(xué)生的理解能力及分析能力,難度中等.2、B【解析】解:3、D【解析】x-1-x-2=x-1-∵關(guān)于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴實(shí)數(shù)a的取值范圍為-∞,-2∪4、C【解析】
先由男女生總數(shù)以及抽取的人數(shù)確定抽樣比,由男生總?cè)藬?shù)乘以抽樣比即可得出結(jié)果.【詳解】用分層抽樣的方法從校樂(lè)團(tuán)中抽取人,所得抽樣比為,因此抽取到的男同學(xué)人數(shù)為人.故選C【點(diǎn)睛】本題主要考查分層抽樣,熟記概念即可,屬于常考題型.5、B【解析】
利用二倍角公式,正弦定理,結(jié)合和差公式化簡(jiǎn)等式得到,得到答案.【詳解】故答案選B【點(diǎn)睛】本題考查了正弦定理,和差公式,意在考查學(xué)生的綜合應(yīng)用能力.6、B【解析】
函數(shù),由,可得,,因此即可得出.【詳解】函數(shù)由,可得解得,∵在區(qū)間內(nèi)沒(méi)有零點(diǎn),
.故選B.【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.7、D【解析】由三視圖可知幾何體是由一個(gè)四棱錐和半個(gè)圓柱組合而成的,所以所求的體積為,故選D.8、B【解析】
由幾何概型中的角度型得:P(A)=2π【詳解】設(shè)固定弦的一個(gè)端點(diǎn)為A,則另一個(gè)端點(diǎn)在圓周上BC劣弧上隨機(jī)選取即可滿足題意,則P(A)=2π故選:B.【點(diǎn)睛】本題考查了幾何概型中的角度型,屬于基礎(chǔ)題.9、A【解析】
由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【點(diǎn)睛】本題考查實(shí)數(shù)值的求法,考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.10、D【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項(xiàng),為公比的等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式,進(jìn)而求得;由數(shù)列的單調(diào)性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項(xiàng),為公比的等比數(shù)列為遞增數(shù)列,即①當(dāng)時(shí),,,即只需即可滿足②當(dāng)時(shí),,,即只需即可滿足綜上所述:實(shí)數(shù)的取值范圍為故選:【點(diǎn)睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問(wèn)題,涉及到等差和等比數(shù)列定義的應(yīng)用、等比數(shù)列通項(xiàng)公式的求解、對(duì)數(shù)運(yùn)算法則的應(yīng)用等知識(shí);解題關(guān)鍵是能夠根據(jù)單調(diào)性得到關(guān)于變量和的關(guān)系式,進(jìn)而通過(guò)分離變量的方式將問(wèn)題轉(zhuǎn)化為變量與關(guān)于的式子的最值的大小關(guān)系問(wèn)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
根據(jù)圓的內(nèi)接正六邊形的邊長(zhǎng)得出弧長(zhǎng),利用弧長(zhǎng)公式即可得到圓心角.【詳解】因?yàn)閳A的內(nèi)接正六邊形的邊長(zhǎng)等于圓的半徑,所以圓弧長(zhǎng)所對(duì)圓心角的弧度數(shù)為1.故答案為:1【點(diǎn)睛】此題考查弧長(zhǎng)公式,根據(jù)弧長(zhǎng)求圓心角的大小,關(guān)鍵在于熟記圓的內(nèi)接正六邊形的邊長(zhǎng).12、4【解析】
先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關(guān)系,而由面積可得,利用基本不等式可求的最小值.【詳解】因?yàn)?,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.因?yàn)?,所以,所以即,?dāng)且僅當(dāng)時(shí)等號(hào)成立.故填4.【點(diǎn)睛】三角形中與邊有關(guān)的最值問(wèn)題,可根據(jù)題設(shè)條件找到各邊的等式關(guān)系或角的等量關(guān)系,再根據(jù)邊的關(guān)系式的結(jié)構(gòu)特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關(guān)的目標(biāo)代數(shù)式轉(zhuǎn)化為與角有關(guān)的三角函數(shù)式后再求其最值.13、【解析】試題分析:根據(jù)題意,由于是定義在上以2為周期的偶函數(shù),那么當(dāng),,可知當(dāng)x,,那么利用周期性可知,在上的解析式就是將x,的圖像向右平移2個(gè)單位得到的,因此可知,答案為.考點(diǎn):函數(shù)奇偶性、周期性的運(yùn)用點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),即周期性,奇偶性,單調(diào)性等有關(guān)性質(zhì).14、④【解析】試題分析:根據(jù)線面平行的判定定理,面面平行的判定定理,面面平行的性質(zhì)定理,及面面垂直的性質(zhì)定理,對(duì)題目中的四個(gè)結(jié)論逐一進(jìn)行分析,即可得到答案.解:當(dāng)m∥n,n?α,,則m?α也可能成立,故①錯(cuò)誤;當(dāng)m?α,n?α,m∥β,n∥β,m與n相交時(shí),α∥β,但m與n平行時(shí),α與β不一定平行,故②錯(cuò)誤;若α∥β,m?α,n?β,則m與n可能平行也可能異面,故③錯(cuò)誤;若α⊥β,α∩β=m,n?α,n⊥m,由面面平行的性質(zhì),易得n⊥β,故④正確故答案為④考點(diǎn):本題考查的知識(shí)點(diǎn)是平面與平面之間的位置關(guān)系,直線與平面之間的位置關(guān)系.點(diǎn)評(píng):熟練掌握空間線與線,線與面,面與面之間的關(guān)系的判定方法及性質(zhì)定理,是解答本題的關(guān)鍵,屬于基礎(chǔ)題.15、.【解析】
由題意,畫出幾何圖形.由三線合一可求得,根據(jù)補(bǔ)角關(guān)系可求得.再結(jié)合余弦定理即可求得.【詳解】在中,,作,如下圖所示:由三線合一可知為中點(diǎn)則所以點(diǎn)為延長(zhǎng)線上一點(diǎn),則在中由余弦定理可得所以故答案為:【點(diǎn)睛】本題考查了等腰三角形性質(zhì),余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.16、或【解析】
利用切線長(zhǎng)最短時(shí),取最小值找點(diǎn):即過(guò)圓心作直線的垂線,求出垂足點(diǎn).就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長(zhǎng)為,則,所以當(dāng)切線長(zhǎng)取最小值時(shí),取最小值,過(guò)圓心作直線的垂線,則點(diǎn)為垂足點(diǎn),此時(shí),直線的方程為,聯(lián)立,得,點(diǎn)的坐標(biāo)為.①若切線的斜率不存在,此時(shí)切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡(jiǎn)得,解得,此時(shí),所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點(diǎn)睛】本題考查過(guò)點(diǎn)的圓的切線方程的求解,考查圓的切線長(zhǎng)相關(guān)問(wèn)題,在過(guò)點(diǎn)引圓的切線問(wèn)題時(shí),要對(duì)直線的斜率是否存在進(jìn)行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長(zhǎng),考查分析問(wèn)題與解決問(wèn)題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)最大值為2,此時(shí);最小值為-1,此時(shí).(2)【解析】
(1)根據(jù)向量數(shù)量積坐標(biāo)公式,列出函數(shù),再根據(jù)函數(shù)圖像過(guò)定點(diǎn),求解函數(shù)解析式,當(dāng)時(shí),解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過(guò)點(diǎn)和,得到,解得,.當(dāng)時(shí),,,最大值為2,此時(shí),最小值為-1,此時(shí).(2)將函數(shù)的圖象向右平移一個(gè)單位得,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得令,,如圖當(dāng)時(shí),在有兩個(gè)不同的解∴,即.【點(diǎn)睛】本題考查(1)三角函數(shù)最值問(wèn)題(2)三角函數(shù)的平移伸縮變換,考查計(jì)算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.18、(1)(–5,–4)(2)【解析】
(1)設(shè)點(diǎn),根據(jù)題意寫出關(guān)于的方程組,得到點(diǎn)坐標(biāo);(2)由兩點(diǎn)間距離公式求出,再由兩點(diǎn)得到直線的方程,利用點(diǎn)到直線的距離公式,求出點(diǎn)到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設(shè)點(diǎn),根據(jù)AC邊的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上,根據(jù)中點(diǎn)公式,可得,解得,所以點(diǎn)的坐標(biāo)是.(2)因?yàn)?,得.,所以直線的方程為,即,故點(diǎn)到直線的距離,所以的面積.【點(diǎn)睛】本題考查中點(diǎn)坐標(biāo)公式,兩點(diǎn)間距離公式,點(diǎn)到直線的距離公式,屬于簡(jiǎn)單題.19、(1)(2)是“理想回歸方程”(3)估計(jì)間隔時(shí)間最多可以設(shè)置為21分鐘【解析】
(1)根據(jù)所給公式計(jì)算可得回歸方程;(2)由理想回歸方程的定義驗(yàn)證;(3)直接解不等式即可.【詳解】(1),(2)當(dāng)時(shí),當(dāng)時(shí),,所以判斷(1)中的方程是“理想回歸方程”(3)由,得估計(jì)間隔時(shí)間最多可以設(shè)置為21分鐘【點(diǎn)睛】本題考查回歸直線方程,解題時(shí)直接根據(jù)所給公式計(jì)算,考查了學(xué)生的運(yùn)算求解能力.20、(1)(2)【解析】
(1)設(shè)等差數(shù)列{an}的公差為d,則an=a1+(n-1)d.因?yàn)樗?解得a1=1,d=.所以{an}的通項(xiàng)公式為an=.(2)b
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年庫(kù)房轉(zhuǎn)租合同轉(zhuǎn)租條件、轉(zhuǎn)租手續(xù)及租金處理分析
- 2024年企業(yè)內(nèi)部審計(jì)保密協(xié)議
- 2024年度企業(yè)社會(huì)責(zé)任報(bào)告合同
- 2024年度住宅小區(qū)木門安裝工程合同
- 2024年度許可使用合同(商標(biāo))
- 腰椎ct課件教學(xué)課件
- 2024北京技術(shù)合同
- 2024年大數(shù)據(jù)使用協(xié)議:數(shù)據(jù)收集、分析和應(yīng)用的具體規(guī)定
- 液體密度課件教學(xué)課件
- 輿論學(xué)課件教學(xué)
- 司機(jī)入職申請(qǐng)表完整優(yōu)秀版
- ALeader 阿立得 ALD515使用手冊(cè)
- 城中村改造政策
- 文雅教育-步步高小學(xué)“六雅路徑”整體育人模式探索(尹鳳葵)
- 六年級(jí)上冊(cè)語(yǔ)文教案盼|部編版 全省一等獎(jiǎng)
- 臨床微生物學(xué)-變形桿菌屬和枸櫞酸桿菌屬
- GB/Z 39502-2020實(shí)驗(yàn)動(dòng)物新型冠狀病毒肺炎(COVID-19)動(dòng)物模型制備指南
- GB/T 4945-2002石油產(chǎn)品和潤(rùn)滑劑酸值和堿值測(cè)定法(顏色指示劑法)
- 廣東開(kāi)放大學(xué) 《大學(xué)英語(yǔ)B》形成性考核 參考答案
- 人選民主測(cè)評(píng)票
- 制造業(yè)的企業(yè)盡職調(diào)查總結(jié)范文
評(píng)論
0/150
提交評(píng)論