版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省佛山北外附校三水外國語校中考數(shù)學(xué)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(
)A.16cm B.18cm C.20cm D.21cm2.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.3.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時(shí)代.中國自主研發(fā)的第一臺7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學(xué)計(jì)數(shù)法表示為()A. B. C. D.4.在以下三個(gè)圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖35.2018年,我國將加大精準(zhǔn)扶貧力度,今年再減少農(nóng)村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數(shù)據(jù)280萬用科學(xué)計(jì)數(shù)法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1076.點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y37.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠38.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.69.如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯(cuò)誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點(diǎn)關(guān)于OE所在直線對稱D.O、E兩點(diǎn)關(guān)于CD所在直線對稱10.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點(diǎn)E,現(xiàn)把△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當(dāng)線段BE′和線段BC′都與線段AD相交時(shí),設(shè)交點(diǎn)分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.11.一個(gè)多邊形的每一個(gè)外角都等于72°,這個(gè)多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形12.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.小李和小林練習(xí)射箭,射完10箭后兩人的成績?nèi)鐖D所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計(jì)這兩人中的新手是_____.14.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側(cè)面積等于.15.如圖,AC是正五邊形ABCDE的一條對角線,則∠ACB=_____.16.如圖,矩形ABCD中,AB=2AD,點(diǎn)A(0,1),點(diǎn)C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點(diǎn)E,若E為AB的中點(diǎn),則k的值為_____.17.如圖,D,E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.18.一個(gè)圓錐的側(cè)面展開圖是半徑為6,圓心角為120°的扇形,那么這個(gè)圓錐的底面圓的半徑為____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當(dāng)AB=AC,且sin∠BEF=時(shí),求的值;(2)如圖2,當(dāng)tan∠ABC=時(shí),過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當(dāng)時(shí),求矩形BCDE的面積20.(6分)如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.21.(6分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.22.(8分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相較于點(diǎn)F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.23.(8分)根據(jù)圖中給出的信息,解答下列問題:放入一個(gè)小球水面升高,,放入一個(gè)大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個(gè)?24.(10分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點(diǎn)O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時(shí),求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時(shí),且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時(shí),設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.25.(10分)如圖,直線l是線段MN的垂直平分線,交線段MN于點(diǎn)O,在MN下方的直線l上取一點(diǎn)P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點(diǎn)C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.26.(12分)如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點(diǎn)坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.27.(12分)某文具店購進(jìn)A,B兩種鋼筆,若購進(jìn)A種鋼筆2支,B種鋼筆3支,共需90元;購進(jìn)A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進(jìn)A,B兩種鋼筆共90支,總費(fèi)用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價(jià)格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進(jìn)價(jià)不變的基礎(chǔ)上再購進(jìn)一批B種鋼筆,漲價(jià)賣出,經(jīng)統(tǒng)計(jì),B種鋼筆售價(jià)為30元時(shí),每月可賣68支;每漲價(jià)1元,每月將少賣4支,設(shè)文具店將新購進(jìn)的B種鋼筆每支漲價(jià)a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價(jià)定為多少元時(shí),每月獲利最大?最大利潤是多少元?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質(zhì)得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點(diǎn):平移的性質(zhì).2、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個(gè)等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點(diǎn):正多邊形和圓.3、A【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】數(shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為7×10-1.故選A.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.4、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點(diǎn),不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導(dǎo)得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點(diǎn),因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點(diǎn)睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.5、B【解析】分析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動了多少位,的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),是負(fù)數(shù).詳解:280萬這個(gè)數(shù)用科學(xué)記數(shù)法可以表示為故選B.點(diǎn)睛:考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.6、D【解析】
先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點(diǎn)所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個(gè)分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點(diǎn)C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點(diǎn)睛】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點(diǎn)所在的象限是解答此題的關(guān)鍵.7、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.8、B【解析】
根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點(diǎn)睛】考查了二次函數(shù)的最值,解題時(shí),利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.9、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點(diǎn)關(guān)于OE所在直線對稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點(diǎn)關(guān)于CD所在直線不對稱,錯(cuò)誤,符合題意.故選D.10、A【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準(zhǔn)確作出輔助線是解題關(guān)鍵.11、C【解析】
任何多邊形的外角和是360°,用360°除以一個(gè)外角度數(shù)即可求得多邊形的邊數(shù).【詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【點(diǎn)睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內(nèi)容.12、C【解析】
分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個(gè).故選C.【點(diǎn)睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動手操作能力和理解能力,注意不要漏解.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.14、8π【解析】
圓錐的側(cè)面積就等于母線長乘底面周長的一半.依此公式計(jì)算即可.【詳解】側(cè)面積=4×4π÷2=8π.故答案為8π.【點(diǎn)睛】本題主要考查了圓錐的計(jì)算,正確理解圓錐的側(cè)面積的計(jì)算可以轉(zhuǎn)化為扇形的面積的計(jì)算,理解圓錐與展開圖之間的關(guān)系.15、36°【解析】
由正五邊形的性質(zhì)得出∠B=108°,AB=CB,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.【詳解】∵五邊形ABCDE是正五邊形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案為36°.16、【解析】解:如圖,作DF⊥y軸于F,過B點(diǎn)作x軸的平行線與過C點(diǎn)垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點(diǎn),∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點(diǎn)睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.17、1:3【解析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.18、2【解析】
試題分析:設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點(diǎn):圓錐側(cè)面展開扇形與底面圓之間的關(guān)系.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)80;(3)100.【解析】
(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得出,設(shè)FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,得△EGA∽△EHD,利用相似三角形的性質(zhì)即可求出;(3)延長AB、ED交于K,延長AC、ED交于T,根據(jù)相似三角形的性質(zhì)可求出BE=ED,故可求出矩形的面積.【詳解】解:(1)過A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,設(shè)FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延長AB、ED交于K,延長AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【點(diǎn)睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵根據(jù)題意作出輔助線再進(jìn)行求解.20、(1)證明見解析(2)90°(3)AP=CE【解析】
(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.【詳解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE考點(diǎn):三角形全等的證明21、(1)y=x2+x;(2)t=-4,r=-1.【解析】
(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn)可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進(jìn)而得出結(jié)論;(2)進(jìn)行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因?yàn)閥=x2+x=(x-1)2+,所以頂點(diǎn)(1,)當(dāng)-2<r<1,且r≠0時(shí),當(dāng)x=r時(shí),y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時(shí),y最小=-4,所以,這時(shí)t=-4,r=-1.當(dāng)r≥1時(shí),y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點(diǎn)睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.22、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質(zhì)和中點(diǎn)的性質(zhì)證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質(zhì),分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點(diǎn)∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點(diǎn),不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點(diǎn):三角形全等,平行四邊形的判定,勾股定理,四邊形的面積23、詳見解析【解析】
(1)設(shè)一個(gè)小球使水面升高x厘米,一個(gè)大球使水面升高y厘米,根據(jù)圖象提供的數(shù)據(jù)建立方程求解即可.(1)設(shè)應(yīng)放入大球m個(gè),小球n個(gè),根據(jù)題意列二元一次方程組求解即可.【詳解】解:(1)設(shè)一個(gè)小球使水面升高x厘米,由圖意,得2x=21﹣16,解得x=1.設(shè)一個(gè)大球使水面升高y厘米,由圖意,得1y=21﹣16,解得:y=2.所以,放入一個(gè)小球水面升高1cm,放入一個(gè)大球水面升高2cm.(1)設(shè)應(yīng)放入大球m個(gè),小球n個(gè),由題意,得,解得:.答:如果要使水面上升到50cm,應(yīng)放入大球4個(gè),小球6個(gè).24、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點(diǎn)O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點(diǎn)睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.25、(1)45°(2),理由見解析【解析】
(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點(diǎn)睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.26、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點(diǎn)式,此題得解;(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長線于點(diǎn)D,由AB∥x軸且AB=1,可得出點(diǎn)B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時(shí),x=m時(shí)y取最大值,利用二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高端會議策劃與銷售服務(wù)合同模板
- 2025年度某局?jǐn)?shù)字化轉(zhuǎn)型勞務(wù)分包結(jié)算規(guī)范合同2篇
- 2025版辦公樓小型裝飾裝修工程施工合同示范6篇
- 2025版建筑工地挖掘機(jī)駕駛員勞動合同標(biāo)準(zhǔn)范本3篇
- 《全球化與兩岸關(guān)系》課件
- 可燃冰資源地質(zhì)評價(jià)方法與實(shí)踐考核試卷
- 2025版學(xué)校食堂蔬菜采購及食品安全追溯服務(wù)合同3篇
- 2025年度美術(shù)品藝術(shù)品投資顧問合同范本4篇
- 2025年學(xué)校節(jié)日慶祝協(xié)議
- 2025年合伙人員協(xié)議
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合試卷(含答案)
- 收養(yǎng)能力評分表
- 山東省桓臺第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國保守國家秘密法實(shí)施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 皮膚儲存新技術(shù)及臨床應(yīng)用
- 外研版七年級英語上冊《閱讀理解》專項(xiàng)練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
評論
0/150
提交評論