山西?。ù笸┲锌家荒?shù)學試題及答案解析_第1頁
山西?。ù笸┲锌家荒?shù)學試題及答案解析_第2頁
山西省(大同)中考一模數(shù)學試題及答案解析_第3頁
山西?。ù笸┲锌家荒?shù)學試題及答案解析_第4頁
山西?。ù笸┲锌家荒?shù)學試題及答案解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西?。ù笸┲锌家荒?shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人2.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(

)A.

B.C.

D.3.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.4.某市2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關(guān)系是()A. B.C. D.5.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關(guān)系式為().A. B. C. D.6.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD7.已知反比例函數(shù)y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣28.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.9.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°10.計算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a4二、填空題(本大題共6個小題,每小題3分,共18分)11.我國古代有這樣一道數(shù)學問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是尺.

12.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.13.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減小;⑥a+b+c>0中,正確的有______.(只填序號)14.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.15.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.16.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是_________.三、解答題(共8題,共72分)17.(8分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.18.(8分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側(cè)),畫出△A′B′C′關(guān)于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.19.(8分)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標.20.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B在y軸上,點在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達式;(2)求點A,B的坐標;(3)把△ABC沿x軸正方向平移,當點B落在拋物線上時,求△ABC掃過區(qū)域的面積.21.(8分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.22.(10分)如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應的一次函數(shù)的表達式;(3)設(shè)點C關(guān)于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).23.(12分)如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;(3)設(shè)(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.24.﹣(﹣1)2018+﹣()﹣1

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.2、D【解析】分析:根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.3、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應用.4、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內(nèi)生產(chǎn)總值,2018年的國內(nèi)生產(chǎn)總值;求2年的增長率,可用2016年的國內(nèi)生產(chǎn)總值表示出2018年的國內(nèi)生產(chǎn)總值,讓2018年的國內(nèi)生產(chǎn)總值相等即可求得所列方程.詳解:設(shè)2016年的國內(nèi)生產(chǎn)總值為1,∵2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,∴2017年的國內(nèi)生產(chǎn)總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內(nèi)生產(chǎn)總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內(nèi)生產(chǎn)總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設(shè)其為1;注意2018年的國內(nèi)生產(chǎn)總值是在2017年的國內(nèi)生產(chǎn)總值的基礎(chǔ)上增加的,需先算出2016年的國內(nèi)生產(chǎn)總值.5、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.6、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定7、D【解析】

根據(jù)反比例函數(shù)的性質(zhì)可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數(shù)y=﹣,∴在每個象限內(nèi),y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,求出相應的y的取值范圍,利用反比例函數(shù)的性質(zhì)解答.8、A【解析】

通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順水速度=水流速度+靜水速度,逆水速度=靜水速度-水流速度.9、A【解析】

利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形對應角相等是本題的解題關(guān)鍵.10、D【解析】

直接利用同底數(shù)冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點:平面展開最短路徑問題12、(Ⅰ)(Ⅱ)如圖,取格點、,連接與交于點,連接與交于點.【解析】

(Ⅰ)根據(jù)勾股定理進行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點C與F關(guān)于AM對稱,連接DF交AM于點P,此時的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點、,連接與交于點,連接與交于點,則點P即為所求.說明:構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點F,使AF=AC=1,則AM垂直平分CF,點C與F關(guān)于AM對稱,連接DF交AM于點P,則點P即為所求.【點睛】本題考查作圖-應用與設(shè)計,涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對稱—最短距離等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會利用數(shù)形結(jié)合的思想解決問題.13、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.14、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.15、1【解析】分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關(guān)鍵.16、136°.【解析】

由圓周角定理得,∠A=∠BOD=44°,由圓內(nèi)接四邊形的性質(zhì)得,∠BCD=180°-∠A=136°【點睛】本題考查了1.圓周角定理;2.圓內(nèi)接四邊形的性質(zhì).三、解答題(共8題,共72分)17、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點睛】本題考查圓的綜合題.18、(1)見解析;(2)點A'的坐標為(-3,3)【解析】

解:(1),△A′'B′'C′'如圖所示.(2)點A'的坐標為(-3,3).19、(1)60°;(2)見解析;(3)對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關(guān)系.

(3)此題應考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關(guān)于x軸、y軸、原點的對稱點,可據(jù)此進行求解.【詳解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等邊三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半徑,故PC與⊙O的位置關(guān)系是相切.(3)如圖;有三種情況:①取C點關(guān)于x軸的對稱點,則此點符合M點的要求,此時M點的坐標為:M1(2,﹣2);劣弧MA的長為:;②取C點關(guān)于原點的對稱點,此點也符合M點的要求,此時M點的坐標為:M2(﹣2,﹣2);劣弧MA的長為:;③取C點關(guān)于y軸的對稱點,此點也符合M點的要求,此時M點的坐標為:M3(﹣2,2);優(yōu)弧MA的長為:;④當C、M重合時,C點符合M點的要求,此時M4(2,2);優(yōu)弧MA的長為:;綜上可知:當S△MAO=S△CAO時,動點M所經(jīng)過的弧長為對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【點睛】本題考查了切線的判定以及弧長的計算方法,注意分類討論思想的運用,不要漏解.20、(1);(2);(3).【解析】

(1)將點代入二次函數(shù)解析式即可;(2)過點作軸,證明即可得到即可得出點A,B的坐標;(3)設(shè)點的坐標為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區(qū)域的面積=代入計算即可.【詳解】解:(1)∵點在二次函數(shù)的圖象上,.解方程,得∴二次函數(shù)的表達式為.(2)如圖1,過點作軸,垂足為..,.在和中,∵,.∵點的坐標為,..(3)如圖2,把沿軸正方向平移,當點落在拋物線上點處時,設(shè)點的坐標為.解方程得:(舍去)或由平移的性質(zhì)知,且,∴四邊形為平行四邊形,.掃過區(qū)域的面積==.【點睛】本題考查了二次函數(shù)與幾何綜合問題,涉及全等三角形的判定與性質(zhì),平行四邊形的性質(zhì)與判定,勾股定理解直角三角形,解題的關(guān)鍵是靈活運用二次函數(shù)的性質(zhì)與幾何的性質(zhì).21、米.【解析】

先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數(shù)的應用.解題關(guān)鍵點:熟記二次函數(shù)的基本性質(zhì).22、(2)2;(2)y=x+2;(3).【解析】

(2)確定A、B、C的坐標即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關(guān)于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數(shù)y=的圖象上的點橫坐標與縱坐標的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設(shè)直線AB的解析式為y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論