版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省佳木斯市湯原縣高級中學2023-2024學年高一下數(shù)學期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,則與的夾角為()A. B. C. D.2.下列事件中,是必然事件的是()A.任意買一張電影票,座位號是2的倍數(shù) B.13個人中至少有兩個人生肖相同C.車輛隨機到達一個路口,遇到紅燈 D.明天一定會下雨3.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.4.已知函數(shù)和在區(qū)間I上都是減函數(shù),那么區(qū)間I可以是()A. B. C. D.5.下列極限為1的是()A.(個9) B.C. D.6.如圖,正方形的邊長為a,以A,C為圓心,正方形邊長為半徑分別作圓,在正方形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A.2-π2 B.2-π37.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出A. B. C. D.8.如圖所示,向量,則()A. B. C. D.9.在中,,且面積為1,則下列結論不正確的是()A. B. C. D.10.已知直線m,n,平面α,β,給出下列命題:①若m⊥α,n⊥β,且m⊥n,則α⊥β②若m∥α,n∥β,且m∥n,則α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,則m⊥n其中正確的命題是()A.②③ B.①③ C.①④ D.③④二、填空題:本大題共6小題,每小題5分,共30分。11.一圓柱的側面展開圖是長、寬分別為3、4的矩形,則此圓柱的側面積是________.12.若方程表示圓,則實數(shù)的取值范圍是______.13.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话?,縱坐標擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標為________14.根據(jù)黨中央關于“精準脫貧”的要求,石嘴山市農(nóng)業(yè)經(jīng)濟部門派3位專家對大武口、惠農(nóng)2個區(qū)進行調(diào)研,每個區(qū)至少派1位專家,則甲,乙兩位專家派遣至惠農(nóng)區(qū)的概率為_____.15.若,則__________.(結果用反三角函數(shù)表示)16.圓與圓的公共弦長為______________。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設平面三點、、.(1)試求向量的模;(2)若向量與的夾角為,求;(3)求向量在上的投影.18.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.19.如圖,在四棱錐中,底面,底面為矩形,為的中點,且,,.(1)求證:平面;(2)若點為線段上一點,且,求四棱錐的體積.20.已知圓C過點,且圓心C在直線上.(1)求圓C的標準方程;(2)若過點(2,3)的直線被圓C所截得的弦的長是,求直線的方程.21.中,角所對的邊分別為,已知.(1)求角的大小;(2)若,求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先求出的模長,然后由可求出答案.【詳解】由題意,,,所以與的夾角為.故選D.【點睛】本題考查了兩個向量的夾角的求法,考查了向量的模長的計算,屬于基礎題.2、B【解析】
根據(jù)必然事件的定義,逐項判斷,即可得到本題答案.【詳解】買一張電影票,座位號可以是2的倍數(shù),也可以不是2的倍數(shù),故A不正確;13個人中至少有兩個人生肖相同,這是必然事件,故B正確;車輛隨機到達一個路口,可以遇到紅燈,也可以遇到綠燈或者黃燈,故C不正確;明天可能下雨也可能不下雨,故D不正確.故選:B【點睛】本題主要考查必然事件的定義,屬基礎題.3、A【解析】
易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【點睛】本題主要考查了旋轉(zhuǎn)體中圓臺的體積公式,屬于基礎題.4、B【解析】
分別根據(jù)和的單調(diào)減區(qū)間即可得出答案.【詳解】因為和的單調(diào)減區(qū)間分別是和,所以選擇B【點睛】本題考查三角函數(shù)的單調(diào)性,意在考查學生對三角函數(shù)圖像與性質(zhì)掌握情況.5、A【解析】
利用極限的運算逐項求解判斷即可【詳解】對于A項,極限為1,對于B項,極限不存在,對于C項,極限為1.對于D項,,故選:A.【點睛】本題考查的極限的運算及性質(zhì),準確計算是關鍵,是基礎題6、D【解析】
將陰影部分拆分成兩個小弓形,從而可求解出陰影部分面積,根據(jù)幾何概型求得所求概率.【詳解】如圖所示:陰影部分可拆分為兩個小弓形則陰影部分面積:S正方形面積:S=∴所求概率P=本題正確選項:D【點睛】本題考查利用幾何概型求解概率問題,屬于基礎題.7、B【解析】
首先確定流程圖所實現(xiàn)的功能,然后利用裂項求和的方法即可確定輸出的數(shù)值.【詳解】由流程圖可知,程序輸出的值為:,即.故選B.【點睛】本題主要考查流程圖功能的識別,裂項求和的方法等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.8、A【解析】
根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運算的性質(zhì),結合進行求解即可.【詳解】.故選:A【點睛】本題考查了平面向量基本定理及加法運算的幾何意義,考查了平面向量數(shù)乘運算的性質(zhì),屬于基礎題.9、C【解析】
根據(jù)三角形面積公式列式,求得,再根據(jù)基本不等式判斷出C選項錯誤.【詳解】根據(jù)三角形面積為得,三個式子相乘,得到,由于,所以.所以,故C選項錯誤.所以本小題選C.【點睛】本小題主要考查三角形面積公式,考查基本不等式的運用,屬于中檔題.10、C【解析】
根據(jù)線線、線面和面面有關定理,對選項逐一分析,由此得出正確選項.【詳解】對于①,兩個平面的垂線垂直,那么這兩個平面垂直.所以①正確.對于②,與可能相交,此時并且與兩個平面的交線平行.所以②錯誤.對于③,直線可能為異面直線,所以③錯誤.對于④,兩個平面垂直,那么這兩個平面的垂線垂直.所以④正確.綜上所述,正確命題的序號為①④.故選:C【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、12【解析】
直接根據(jù)圓柱的側面展開圖的面積和圓柱側面積的關系計算得解.【詳解】因為圓柱的側面展開圖的面積和圓柱側面積相等,所以此圓柱的側面積為.故答案為:12【點睛】本題主要考查圓柱的側面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.12、.【解析】
把圓的一般方程化為圓的標準方程,得出表示圓的條件,即可求解,得到答案.【詳解】由題意,方程可化為,方程表示圓,則滿足,解得.【點睛】本題主要考查了圓的一般方程與圓的標準方程的應用,其中熟記圓的一般方程與圓的標準方程的互化是解答的關鍵,著重考查了推理與運算能力,屬于基礎.13、,【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话?,可得,把函?shù)縱坐標擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】
將所有的基本事件全部列舉出來,確定基本事件的總數(shù),并確定所求事件所包含的基本事件數(shù),然后利用古典概型的概率公式求出答案.【詳解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口區(qū)調(diào)研的專家),共個,因此,所求的事件的概率為,故答案為.【點睛】本題考查古典概型概率的計算,解決這類問題的關鍵在于確定基本事件的數(shù)目,一般利用枚舉法和數(shù)狀圖法來列舉,遵循不重不漏的基本原則,考查計算能力,屬于基礎題.15、;【解析】
由條件利用反三角函數(shù)的定義和性質(zhì)即可求解.【詳解】,則,故答案為:【點睛】本題考查了反三角函數(shù)的定義和性質(zhì),屬于基礎題.16、【解析】
利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長公式可得所求.【詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長為,故答案為.【點睛】本題考查兩圓位置關系,直線與圓的位置關系,考查運算能力,屬于基本題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
(1)計算出、的坐標,可計算出的坐標,再利用平面向量模長的坐標表示可計算出向量的模;(2)由可計算出的值;(3)由投影的定義得出向量在上的投影為可計算出結果.【詳解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量與的夾角的余弦為,且.所以向量在上的投影為.【點睛】本題考查平面向量的坐標運算以及平面向量夾角的坐標表示、以及向量投影的計算,解題時要熟悉平面向量坐標的運算律以及平面向量數(shù)量積、模、夾角的坐標運算,考查計算能力,屬于基礎題.18、(1);(2)【解析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【詳解】(1)因為(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因為b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當且僅當b=c=1時,取等號.∴面積的最大值.【點睛】本題考查正弦定理解三角形及面積問題,解決三角形面積最值問題常常結合均值不等式求解,屬于中等題.19、(1)見解析(2)6【解析】
(1)連接交于點,得出點為的中點,利用中位線的性質(zhì)得出,再利用直線與平面平行的判定定理可得出平面;(2)過作交于,由平面,得出平面,可而出,結合,可證明出平面,可得出,并計算出,利用平行線的性質(zhì)求出的長,再利用錐體的體積公式可計算出四棱錐的體積.【詳解】(1)連接交于,連接.四邊形為矩形,∴為中點.又為中點,∴.又平面,平面,∴平面;(2)過作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.連接,則,又是矩形,易證,而,,得,由得,∴.又矩形的面積為8,∴.【點睛】本題考查直線與平面平行的證明,以及錐體體積的計算,直線與平面平行的證明,常用以下三種方法進行證明:(1)中位線平行;(2)平行四邊形對邊平行;(3)構造面面平行來證明線面平行.一般遇到中點找中點,根據(jù)已知條件類型選擇合適的方法證明.20、(1);(2)或.【解析】
(1)設圓心,由兩點間的距離及圓心在直線上,列出方程組,求解即可求出圓心坐標,進而求出半徑,寫出圓的方程(2)由的長是,求出圓心到直線的距離,然后分直線斜率存在與不存在求解.【詳解】(1)設圓C的標準方程為依題意可得:解得,半徑.∴圓C的標準方程為;(2),∴圓心到直線m的距離①直線斜率不存在時,直線m方程為:;②直線m斜率存在時,設直線m為.,解得∴直線m的方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財經(jīng)職業(yè)學院《社會保障》2023-2024學年第一學期期末試卷
- 貴陽幼兒師范高等專科學?!吨袑W政治教學法與技能訓練》2023-2024學年第一學期期末試卷
- 2025年江蘇省安全員C證考試題庫
- 2025福建建筑安全員-C證考試題庫
- 貴陽康養(yǎng)職業(yè)大學《酒店規(guī)劃與設計》2023-2024學年第一學期期末試卷
- 廣州中醫(yī)藥大學《高分子化學與物理》2023-2024學年第一學期期末試卷
- 2025年安徽省建筑安全員-C證(專職安全員)考試題庫
- 2025遼寧省建筑安全員C證考試(專職安全員)題庫附答案
- 廣州醫(yī)科大學《混凝土結構基本原理(建筑工程)》2023-2024學年第一學期期末試卷
- 2025年廣東建筑安全員《B證》考試題庫
- 幼兒園小班教案《墊子多玩》
- 論藥品管理在藥品安全中的重要性
- 河北省唐山市2023-2024學年高一上學期1月期末考試物理試題(含答案解析)
- 大學宣傳部工作總結學生會
- 2024年永州職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 藥物分離與純化技術
- 餐廳各類食材原材料供貨驗收標準
- 物理實驗:測量電容器的電容和電荷量
- 免疫相關不良反應的預防和處理
- 【區(qū)域開發(fā)戰(zhàn)略中環(huán)境保護政策的現(xiàn)存問題及優(yōu)化建議分析6800字(論文)】
- 新型農(nóng)村集體經(jīng)濟研究綜述
評論
0/150
提交評論