版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭州市余杭區(qū)中考三模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.2.在直角坐標平面內,已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.3.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.4.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°5.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)6.若,則()A. B. C. D.7.我國作家莫言獲得諾貝爾文學獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達到2100000冊.把2100000用科學記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1068.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體9.某區(qū)10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數(shù)的平均數(shù)和眾數(shù)分別是()人數(shù)3421分數(shù)80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和8010.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.11.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.12.-2的倒數(shù)是()A.-2 B. C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.14.已知(x、y、z≠0),那么的值為_____.15.若關于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.16.如圖,在△ABC中,DE∥BC,若AD=1,DB=2,則的值為_________.17.讓我們輕松一下,做一個數(shù)字游戲:第一步:取一個自然數(shù),計算得;第二步:算出的各位數(shù)字之和得,計算得;第三步:算出的各位數(shù)字之和得,再計算得;依此類推,則____________18.點G是三角形ABC的重心,,,那么=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).(1)求n的值和拋物線的解析式;(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.20.(6分)進入防汛期后,某地對河堤進行了加固.該地駐軍在河堤加固的工程中出色完成了任務.這是記者與駐軍工程指揮官的一段對話:通過這段對話,請你求出該地駐軍原來每天加固的米數(shù).21.(6分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.22.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.23.(8分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.24.(10分)化簡:(x+7)(x-6)-(x-2)(x+1)25.(10分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.26.(12分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?27.(12分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結果保留根號).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.2、D【解析】
先求出點M到x軸、y軸的距離,再根據(jù)直線和圓的位置關系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y(tǒng)軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.【點睛】本題考查點的坐標和直線與圓的位置關系,能熟記直線與圓的位置關系的內容是解此題的關鍵.3、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.4、A【解析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質、三角形內角和定理,鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題.5、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉180°后,C點的對應點與C一定關于A對稱,A是對稱點連線的中點,據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉.6、D【解析】
等式左邊為非負數(shù),說明右邊,由此可得b的取值范圍.【詳解】解:,
,解得故選D.【點睛】本題考查了二次根式的性質:,.7、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).8、A【解析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結構特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關鍵.9、B【解析】
根據(jù)眾數(shù)及平均數(shù)的定義,即可得出答案.【詳解】解:這組數(shù)據(jù)中85出現(xiàn)的次數(shù)最多,故眾數(shù)是85;平均數(shù)=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點睛】本題考查了眾數(shù)及平均數(shù)的知識,掌握各部分的概念是解題關鍵.10、A【解析】
根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.11、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側,而在對稱軸的左側,y隨x得增大而減小,所以.總結可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質,解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質.12、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.14、1【解析】解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案為1.點睛:本題考查了分式的化簡求值和解二元一次方程組,難度適中,關鍵是先用z把x與y表示出來再進行代入求解.15、m>-1【解析】
首先解關于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關于m的不等式,求得m的范圍.【詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據(jù)題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【點睛】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關鍵是把m當作已知數(shù)表示出x+y的值,再得到關于m的不等式.16、【解析】DE∥BC即17、1【解析】
根據(jù)題意可以分別求得a1,a2,a3,a4,從而可以發(fā)現(xiàn)這組數(shù)據(jù)的特點,三個一循環(huán),從而可以求得a2019的值.【詳解】解:由題意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案為:1.【點睛】本題考查數(shù)字變化類規(guī)律探索,解題的關鍵是明確題意,求出前幾個數(shù),觀察數(shù)的變化特點,求出a2019的值.18、.【解析】
根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點G是△ABC的重心,根據(jù)重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)n=2;y=x2﹣x﹣1;(2)p=;當t=2時,p有最大值;(3)6個,或;【解析】
(1)把點B的坐標代入直線解析式求出m的值,再把點C的坐標代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)令y=0求出點A的坐標,從而得到OA、OB的長度,利用勾股定理列式求出AB的長,然后根據(jù)兩直線平行,內錯角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長公式表示出p,利用直線和拋物線的解析式表示DE的長,整理即可得到P與t的關系式,再利用二次函數(shù)的最值問題解答;
(3)根據(jù)逆時針旋轉角為90°可得A1O1∥y軸時,B1O1∥x軸,旋轉角是180°判斷出A1O1∥x軸時,B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.【詳解】解:(1)∵直線l:y=x+m經過點B(0,﹣1),∴m=﹣1,∴直線l的解析式為y=x﹣1,∵直線l:y=x﹣1經過點C(4,n),∴n=×4﹣1=2,∵拋物線y=x2+bx+c經過點C(4,2)和點B(0,﹣1),∴,解得,∴拋物線的解析式為y=x2﹣x﹣1;(2)令y=0,則x﹣1=0,解得x=,∴點A的坐標為(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y軸,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE?cos∠DEF=DE?=DE,DF=DE?sin∠DEF=DE?=DE,∴p=2(DF+EF)=2(+)DE=DE,∵點D的橫坐標為t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴當t=2時,p有最大值.(3)“落點”的個數(shù)有6個,如圖1,圖2中各有2個,圖3,圖4各有一個所示.如圖3中,設A1的橫坐標為m,則O1的橫坐標為m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如圖4中,設A1的橫坐標為m,則B1的橫坐標為m+,B1的縱坐標比例A1的縱坐標大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋轉180°時點A1的橫坐標為或【點睛】本題是二次函數(shù)綜合題型,主要考查了一次函數(shù)圖象上點的坐標特征,待定系數(shù)法求二次函數(shù)解析式,銳角三角函數(shù),長方形的周長公式,以及二次函數(shù)的最值問題,本題難點在于(3)根據(jù)旋轉角是90°判斷出A1O1∥y軸時,B1O1∥x軸,旋轉角是180°判斷出A1O1∥x軸時,B1A1∥AB,解題時注意要分情況討論.20、300米【解析】
解:設原來每天加固x米,根據(jù)題意,得.去分母,得1200+4200=18x(或18x=5400)解得.檢驗:當時,(或分母不等于0).∴是原方程的解.答:該地駐軍原來每天加固300米.21、(1)見解析;(2)【解析】
(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質22、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.23、(1)12;(2)1【解析】
(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、2x-40.【解析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.25、詳見解析.【解析】
先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據(jù)∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.【點睛】本題主要考查正方形的性質、全等三角形的判定和性質,關鍵是要靈
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版高端婚紗攝影器材租賃服務合同范本二零二五3篇
- 2025年度辦公樓清潔服務與智慧安防系統(tǒng)合同3篇
- 2024年還建房交易合同范例
- 2024版企業(yè)宣傳物料訂做合同書一
- 2025年內容創(chuàng)作合作合同2篇
- 2024影視制作與發(fā)行承包合同
- 二零二五年度出租車合資購買合同書:出租車行業(yè)智能語音識別技術合作協(xié)議2篇
- 2024年跨國食品供應鏈合作協(xié)議
- 二零二五年度2025版9A級酒店管理離婚財產分配協(xié)議書2篇
- 2025年度物業(yè)安全保障與應急處理合同范本2篇
- 三級合伙人制度
- 2024年湖北省黃石市黃石港區(qū)政府雇員招聘37人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 礦業(yè)施工組織設計方案
- 椎體感染的護理查房
- 產后飲食的健康宣教-課件
- 兒科案例完整-川崎病課件
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗收規(guī)范(暫行)
- 電子行業(yè)認證行業(yè)深度研究報告
- 2022年10月自考00318公共政策試題及答案含解析
- 四川省瀘州市2023-2024學年高二上學期期末考試語文試題
- 個人簡歷電子版表格下載
評論
0/150
提交評論