湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題含解析_第1頁
湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題含解析_第2頁
湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題含解析_第3頁
湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題含解析_第4頁
湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省十四校聯(lián)考2024年高一下數(shù)學期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲、乙兩名運動員分別進行了5次射擊訓練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運動員的平均成績分別用表示,方差分別用表示,則A. B.C. D.2.已知向量,,,且,則()A. B. C. D.3.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.若拋物線上一點到焦點的距離是該點到軸距離的3倍,則()A. B. C. D.75.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點A.向左平行移動個單位長度B.向右平行移動個單位長度C.向左平行移動個單位長度D.向右平行移動個單位長度6.以圓形摩天輪的軸心為原點,水平方向為軸,在摩天輪所在的平面建立直角坐標系.設摩天輪的半徑為米,把摩天輪上的一個吊籃看作一個點,起始時點在的終邊上,繞按逆時針方向作勻速旋轉運動,其角速度為(弧度/分),經(jīng)過分鐘后,到達,記點的橫坐標為,則關于時間的函數(shù)圖象為()A. B.C. D.7.甲:(是常數(shù))乙:丙:(、是常數(shù))?。海?、是常數(shù)),以上能成為數(shù)列是等差數(shù)列的充要條件的有幾個()A.1 B.2 C.3 D.48.已知平行四邊形對角線與交于點,設,,則()A. B. C. D.9.某班設計了一個八邊形的班徽(如圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構成的正方形所組成,該八邊形的面積為A.; B.C. D.10.如圖,設,是平面內(nèi)相交的兩條數(shù)軸,,分別是與軸,軸正方向同向的單位向量,且,若向量,則把有序數(shù)對叫做向量在坐標系中的坐標.假設在坐標系中的坐標為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列滿足:(且為常數(shù)),,當時,則數(shù)列的前項的和為________.12.已知函數(shù),關于此函數(shù)的說法:①為周期函數(shù);②有對稱軸;③為的對稱中心;④;正確的序號是_________.13.在平面直角坐標系xOy中,已知直角中,直角頂點A在直線上,頂點B,C在圓上,則點A橫坐標的取值范圍是__________.14.已知角α的終邊與單位圓交于點.則___________.15.已知圓錐的表面積等于,其側面展開圖是一個半圓,則底面圓的半徑為__________.16.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點,則點C到平面的距離等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求的值;(2)求的單調遞增區(qū)間.18.從甲、乙、丙、丁四個人中選兩名代表,求:(1)甲被選中的概率;(2)丁沒被選中的概率.19.如圖,在四棱錐中,平面,底面是棱長為的菱形,,,是的中點.(1)求證://平面;(2)求直線與平面所成角的正切值.20.設數(shù)列為等比數(shù)列,且,,(1)求數(shù)列的通項公式:(2)設,數(shù)列的前項和,求證:.21.甲、乙兩臺機床同時加工直徑為10cm的零件,為了檢驗零件的質量,從零件中各隨機抽取6件測量,測得數(shù)據(jù)如下(單位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分別計算上述兩組數(shù)據(jù)的平均數(shù)和方差(2)根據(jù)(1)的計算結果,說明哪一臺機床加工的零件更符合要求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

分別計算平均值和方差,比較得到答案.【詳解】由題意可得,,.故.故答案選D【點睛】本題考查了數(shù)據(jù)的平均值和方差的計算,意在考查學生的計算能力.2、C【解析】

由可得,代入求解可得,則,進而利用誘導公式求解即可【詳解】由可得,即,所以,因為,所以,則,故選:C【點睛】本題考查垂直向量的應用,考查里利用誘導公式求三角函數(shù)值3、D【解析】

由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:

該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,

故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎知識,考查推理能力與計算能力,是中檔題.4、A【解析】由題意,焦點坐標,所以,解得,故選A。5、D【解析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向右平行移動個單位長度,故選D.【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個單位得的圖象,再把橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得的圖象,另一種是把的圖象橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,再向左平移個單位得的圖象.6、B【解析】

根據(jù)題意,點的橫坐標,由此通過特殊點的坐標,判斷所給的圖象是否滿足條件,從而得出結論.【詳解】根據(jù)題意可得,振幅,角速度,初相,點的橫坐標,故當時,,當時,為的最大值,故選:B.【點睛】本題考查三角函數(shù)圖象的實際應用以及余弦型函數(shù)圖象的特征,其中,求出函數(shù)模型的解析式是解題的關鍵,考查推理能力,屬于中等題.7、D【解析】

由等差數(shù)列的定義和求和公式、通項公式的關系,以及性質,即可得到結論.【詳解】數(shù)列是等差數(shù)列,設公差為,由定義可得(是常數(shù)),且(是常數(shù)),,令,即(、是常數(shù)),等差數(shù)列通項,令,即(、是常數(shù)),綜上可得甲乙丙丁都對.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式、求和公式的關系,考查充分必要條件的定義,考查推理能力,屬于基礎題.8、B【解析】

根據(jù)向量減法的三角形法則和數(shù)乘運算直接可得結果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數(shù)乘運算的應用,屬于基礎題.9、A【解析】

試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個等腰三角形面積;故八邊形面積.故本題正確答案為A.考點:余弦定理和三角形面積的求解.【方法點晴】本題是一道關于三角函數(shù)在幾何中的應用的題目,掌握正余弦定理是解題的關鍵;首先根據(jù)三角形面積公式求出個三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進而得到正方形的面積,最后得到答案.10、D【解析】

可得.【詳解】向量,則.故選:.【點睛】本題主要考查了向量模的運算和向量的數(shù)量積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【點睛】本題考查了由遞推關系式求數(shù)列的性質、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.12、①②④【解析】

由三角函數(shù)的性質及,分別對各選項進行驗證,即可得出結論.【詳解】解:由函數(shù),可得①,可得為周期函數(shù),故①正確;②由,,故,是偶函數(shù),故有對稱軸正確,故②正確;③為偶數(shù)時,,為奇數(shù)時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【點睛】本題主要考查三角函數(shù)的值域、周期性、對稱性等相關知識,綜合性大,屬于中檔題.13、【解析】

由題意畫出圖形,寫出以原點為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【詳解】如圖所示,當點往直線兩邊運動時,不斷變小,當點為直線上的定點時,直線與圓相切時,最大,∴當為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點橫坐標的取值范圍是.故答案為:.【點睛】本題考查直線與圓位置關系的應用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的應用.14、【解析】

直接利用三角函數(shù)的坐標定義求解.【詳解】由題得.故答案為【點睛】本題主要考查三角函數(shù)的坐標定義,意在考查學生對該知識的理解掌握水平,屬于基礎題.15、【解析】

設出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑?!驹斀狻吭O圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【點睛】本題考查根據(jù)圓錐的表面積求底面圓半徑,屬于基礎題。16、【解析】

利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點,所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設點C到平面的距離為,由即,即,所以.故答案為:【點睛】本題考查了等體法求點到面的距離,同時考查了線面垂直的判定定理,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,(1)將代入,利用特殊角的三角函數(shù)可得的值;(2)利用正弦函數(shù)的單調性解不等式,可得到函數(shù)的遞增區(qū)間.詳解:(Ⅰ)===(Ⅱ)由題可得,函數(shù)的單調遞增區(qū)間是點睛:本題主要考查三角函數(shù)的單調性、三角函數(shù)的恒等變換,屬于中檔題.函數(shù)的單調區(qū)間的求法:(1)代換法:①若,把看作是一個整體,由求得函數(shù)的減區(qū)間,求得增區(qū)間;②若,則利用誘導公式先將的符號化為正,再利用①的方法,或根據(jù)復合函數(shù)的單調性規(guī)律進行求解;(2)圖象法:畫出三角函數(shù)圖象,利用圖象求函數(shù)的單調區(qū)間.18、(1);(2).【解析】

(1)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定甲被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率(2)先確定從甲、乙、丙、丁四個人中選兩名代表總事件數(shù),再確定丁沒被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率.【詳解】(1)從甲、乙、丙、丁四個人中選兩名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6種基本事件,其中甲被選中包括甲乙,甲丙,甲丁三種基本事件,所以甲被選中的概率為.(2)丁沒被選中包括甲乙,甲丙,乙丙三種基本事件,所以丁沒被選中的概率為.點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.19、(1)見解析(2)【解析】

(1)連接交于點,則為的中點,由中位線的性質得出,再利用直線與平面平行的判定定理得出平面;(2)取的中點,連接,由中位線的性質得到,且,可得出平面,于此得出直線與平面所成的角為,然后在中計算即可.【詳解】(1)連接,交于點,連接,由底面是菱形,知是的中點,又是的中點,∴.又∵平面,平面,∴平面;(2)取中點,連接,∵分別為的中點,∴,∵平面,∴平面,∴直線與平面所成角為,∵,,∴.【點睛】本題考查直線與平面平行的判定,考查直線與平面所成角的計算,在計算直線與平面所成角時,要注意過點作平面的垂線,構造出直線與平面所成的角,再選擇合適的直角三角形求解,考查邏輯推理能力與計算能力,屬于中等題.20、(1)(2)詳見解析【解析】

(1)將已知條件轉化為等比數(shù)列的基本量和,得到的值,從而得到數(shù)列的通項;(2)根據(jù)題意寫出,然后得到數(shù)列的通項,利用列項相消法進行求和,得到其前項和,然后進行證明.【詳解】設等比數(shù)列的首項為,公比為,因為,所以,所以所以;(2),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論