版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省成都市實驗高級中學2025屆數(shù)學高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,角所對的邊分別為,且則最大角為()A. B. C. D.2.已知兩個正數(shù)a,b滿足,則的最小值是(
)A.2 B.3 C.4 D.53.若,則下列不等式中不正確的是()A. B. C. D.4.已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如圖所示(單位:km/h),若從中任抽取2輛汽車,則恰好有1輛汽車超速的概率為()A. B. C. D.5.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.6.在各項均為正數(shù)的數(shù)列中,對任意都有.若,則等于()A.256 B.510 C.512 D.10247.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.8.某興趣小組合作制作了一個手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.9.已知是平面內(nèi)兩個互相垂直的向量,且,若向量滿足,則的最大值是()A.1 B. C.3 D.10.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列{an}滿足a1=2,a12.下列說法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認為正確的序號全部寫上)13.記,則函數(shù)的最小值為__________.14.已知直線,圓O:上到直線的距離等于2的點有________個。15.某幾何體的三視圖如圖所示,則該幾何體的體積為__________.16.已知數(shù)列中,其中,,那么________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.18.設(shè)a為實數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;(3)寫出函數(shù)在R上的零點個數(shù)(不必寫出過程).19.已知圓與圓:關(guān)于直線對稱.(1)求圓的標準方程;(2)已知點,若與直線垂直的直線與圓交于不同兩點、,且是鈍角,求直線在軸上的截距的取值范圍.20.對于函數(shù)f1(x),?f2(x),?h(x),如果存在實數(shù)(1)下面給出兩組函數(shù),h(x)是否分別為f1第一組:f1第二組:;(2)設(shè)f1x=log2x,f2x21.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點.(1)求證:平面;(2)若平面平面,,求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)正弦定理可得三邊的比例關(guān)系;由大邊對大角可知最大,利用余弦定理求得余弦值,從而求得角的大小.【詳解】由正弦定理可得:設(shè),,最大為最大角本題正確選項:【點睛】本題考查正弦定理、余弦定理的應用,涉及到三角形中大邊對大角的關(guān)系,屬于基礎(chǔ)題.2、D【解析】
根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點睛】本題考查基本不等式的性質(zhì)以及應用,關(guān)鍵是掌握基本不等式應用的條件.3、C【解析】
,可得,則根據(jù)不等式的性質(zhì)逐一分析選項,A:,,所以成立;B:,則,根據(jù)基本不等式以及等號成立的條件則可判斷;C:且,根據(jù)可乘性可知結(jié)果;D:,根據(jù)乘方性可判斷結(jié)果.【詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因為,所以等號不成立,所以成立,所以B是正確的;C:由且,根據(jù)不等式的性質(zhì),可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【點睛】本題考查不等式的性質(zhì),不等式等號成立的條件,熟記不等式的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.4、A【解析】
求出基本事件的總數(shù),以及滿足題意的基本事件數(shù)目,即可求解概率.【詳解】解:由題意任抽取2輛汽車,其速度分別為:,共15個基本事件,其中恰好有1輛汽車超速的有,,共8個基本事件,則恰好有1輛汽車超速的概率為:,故選:A.【點睛】本題考查古典概型的概率的求法,屬于基本知識的考查.5、B【解析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【詳解】解:對一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點睛】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.6、C【解析】
因為,所以,則因為數(shù)列的各項均為正數(shù),所以所以,故選C7、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.8、D【解析】
由三視圖可知,得到該幾何體是由兩個圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點睛】本題考查了幾何體的三視圖及表面積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應公式求解.9、D【解析】
設(shè)出平面向量的夾角,求出的夾角,最后利用平面向量數(shù)量積的運算公式進行化簡等式,最后利用輔助角公式求出的最大值.【詳解】設(shè)平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以.,,,其中,顯然當時,有最大值,即.故選:D【點睛】本題考查平面向量數(shù)量積的性質(zhì)及運算,屬于中檔題.10、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個零點,因為,,所以,且當時,,,當時,,,當時,,,選項C滿足條件.故選C.點睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點的符號進行驗證,逐一驗證進行排除.二、填空題:本大題共6小題,每小題5分,共30分。11、2×【解析】
判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.12、③④【解析】
①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進而判斷出該命題的正誤?!驹斀狻竣儆傻?,則,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時,取得最小值,當時,,故的最大值為,錯誤;②若,則函數(shù),則,即函數(shù)的最大值為,無最小值,故錯誤;③若,滿足,則,則,由,得,則,當且僅當,即得,即時取等號,即的最小值為,故③正確;④,當且僅當,即,即時,取等號,即函數(shù)的最小值為,故④正確,故答案為:③④?!军c睛】本題考查利用基本不等式來判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個條件,同時注意結(jié)合雙勾函數(shù)單調(diào)性來考查,屬于中等題。13、4【解析】
利用求解.【詳解】,當時,等號成立.故答案為:4【點睛】本題主要考查絕對值不等式求最值,意在考查學生對該知識的理解掌握水平和分析推理能力.14、3;【解析】
根據(jù)圓心到直線的距離和半徑之間的長度關(guān)系,可通過圖形確定所求點的個數(shù).【詳解】由圓的方程可知,圓心坐標為,半徑圓心到直線的距離:如上圖所示,此時,則到直線距離為的點有:,共個本題正確結(jié)果:【點睛】本題考查根據(jù)圓與直線的位置關(guān)系求解圓上點到直線距離為定值的點的個數(shù),關(guān)鍵是能夠根據(jù)圓心到直線的距離確定直線的大致位置,從而根據(jù)半徑長度確定點的個數(shù).15、【解析】由三視圖知該幾何體是一個半圓錐挖掉一個三棱錐后剩余的部分,如圖所示,所以其體積為.點睛:求多面體的外接球的面積和體積問題常用方法有(1)三條棱兩兩互相垂直時,可恢復為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對稱性,球心為上下底面外接圓的圓心連線的中點,再根據(jù)勾股定理求球的半徑;(3)如果設(shè)計幾何體有兩個面相交,可過兩個面的外心分別作兩個面的垂線,垂線的交點為幾何體的球心,本題就是第三種方法.16、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以為首項,以為公比的等比數(shù)列,然后利用等比數(shù)列的通項公式求解.【詳解】由,得,,則數(shù)列是以為首項,以為公比的等比數(shù)列,.故答案為:1.【點睛】本題考查數(shù)列的遞推關(guān)系、等比數(shù)列通項公式,考查運算求解能力,特別是對復雜式子的理解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)考慮切線的斜率是否存在,結(jié)合直線與圓相切的的條件d=r,直接求解圓的切線方程即可.(2)利用圓的圓心距、半徑及半弦長的關(guān)系,列出方程,求解a即可.【詳解】(1)由圓的方程得到圓心,半徑.當直線斜率不存在時,直線與圓顯然相切;當直線斜率存在時,設(shè)所求直線方程為,即,由題意得:,解得,∴方程為,即.故過點且與圓相切的直線方程為或.(2)∵弦長為,半徑為2.圓心到直線的距離,∴,解得.【點睛】本題考查直線與圓的位置關(guān)系的綜合應用,考查切線方程的求法,考查了垂徑定理的應用,考查計算能力.18、(1)(2)不存在這樣的實數(shù),理由見解析(3)見解析【解析】
(1)代入的值,通過討論的范圍,求出不等式的解集即可;(2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過討論的范圍,判斷函數(shù)的零點個數(shù)即可【詳解】(1)當時,,則當時,,解得或,故;當時,,解集為,綜上,的解集為(2),顯然,,①當時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實數(shù);②當時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實數(shù);③當時,則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實數(shù)(3)當或時,函數(shù)的零點個數(shù)為1;當或時,函數(shù)的零點個數(shù)為2;當時,函數(shù)的零點個數(shù)為3【點睛】本題考查分段函數(shù)的應用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點個數(shù),著重考查分類討論思想19、(1);(2)【解析】
(1)根據(jù)兩圓對稱,直徑一樣,只需圓心對稱即可得圓C的標準方程;(2)設(shè)直線l的方程為y=﹣x+m與圓C聯(lián)立方程組,利用韋達定理,設(shè)而不求的思想即可求解b范圍,即截距的取值范圍.【詳解】(1)圓的圓心坐標為,半徑為2設(shè)圓的圓心坐標為,由題意可知解得:由對稱性質(zhì)可得,圓的半徑為2,所以圓的標準方程為:(2)設(shè)直線的方程為,聯(lián)立得:,設(shè)直線與圓的交點,,由,得,(1)因為為鈍角,所以,且直線不過點即滿足,且又,,所以(2)由(1)式(2)式可得,滿足,即,因為,所以直線在軸上的截距的取值范圍是【點睛】本題考查直線與圓的位置關(guān)系,是中檔題,解題時要認真審題,注意韋達定理的合理運用.20、(1)見解析;(2)(-∞,-5)【解析】
(1)①設(shè)asinx+bcos取a=12,??b=②設(shè)a(x2-x)+b(則a+b=1-a+b=-1b=1,該方程組無解.所以h(x)不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣設(shè)備安裝勞務合同
- 家禽銷售合同模板
- 解除合同退費協(xié)議
- 農(nóng)產(chǎn)品購銷合同簽訂合同的履行方式
- 租賃合同權(quán)益轉(zhuǎn)讓方案樣式
- 代收款項合同樣本
- 貨架地板購銷合同指南
- 歷史劇拍攝劇組招聘協(xié)議
- 酒店綠化建設(shè)項目合同模板
- 供電設(shè)施防盜施工合同
- 公安機關(guān)執(zhí)法執(zhí)勤規(guī)范用語
- 如何發(fā)揮采購在公司高質(zhì)量發(fā)展中作用
- 2023-2024學年湖南省長沙市雨花區(qū)外研版(三起)五年級上冊期末質(zhì)量檢測英語試卷
- 監(jiān)理質(zhì)量評估報告
- 《中國封建社會》課件
- 藥物代謝動力學-中國藥科大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 血液科護士的營養(yǎng)與膳食指導
- 短視頻實習運營助理
- 互聯(lián)網(wǎng)醫(yī)療服務創(chuàng)業(yè)計劃書
- 對加快推進新型工業(yè)化的認識及思考
- 上海交通大學2016年622物理化學(回憶版)考研真題
評論
0/150
提交評論