版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省天長市2025屆數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂種顏色,則2個矩形顏色不同的概率為()A.13 B.12 C.22.在ΔABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.若a:b:c=3:4:5,則cosA.35 B.45 C.3.設(shè)函數(shù),則滿足的的取值范圍是()A. B. C. D.4.已知等比數(shù)列的公比為,若,,則()A.-7 B.-5 C.7 D.55.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.6.某社區(qū)義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統(tǒng)抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數(shù)為()3940112551366778889600123345A.1 B.2 C.3 D.47.若,且,則下列不等式一定成立的是()A. B.C. D.8.已知直線與,若,則()A.2 B.1 C.2或-1 D.-2或19.一個幾何體的三視圖分別是一個正方形,一個矩形,一個半圓,尺寸大小如圖所示,則該幾何體的體積是()A. B. C. D.10.已知三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩垂直,且OA=OB=OC=2,則以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的體積是()A.π8 B.π6 C.π二、填空題:本大題共6小題,每小題5分,共30分。11.已知不等式x2-x-a>0的解集為x|x>3或12.向量滿足:,與的夾角為,則=_____________;13.的值為__________.14.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.15.已知數(shù)列的通項公式,則____________.16.函數(shù)f(x)=sin22x的最小正周期是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(Ⅰ)求的最小正周期;(Ⅱ)若在區(qū)間上的最大值為,求的最小值.18.已知圓的半徑是2,圓心在直線上,且圓與直線相切.(1)求圓的方程;(2)若點是圓上的動點,點在軸上,的最大值等于7,求點的坐標(biāo).19.已知函數(shù)的圖象如圖所示.(1)求這個函數(shù)的解析式,并指出它的振幅和初相;(2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.20.已知在直角三角形ABC中,,(如右圖所示)(Ⅰ)若以AC為軸,直角三角形ABC旋轉(zhuǎn)一周,試說明所得幾何體的結(jié)構(gòu)特征并求所得幾何體的表面積.(Ⅱ)一只螞蟻在問題(Ⅰ)形成的幾何體上從點B繞著幾何體的側(cè)面爬行一周回到點B,求螞蟻爬行的最短距離.21.設(shè)函數(shù)(1)若對于一切實數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由古典概型及概率計算公式得2個矩形顏色不同的概率為69【詳解】用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂1種顏色,共32則2個矩形顏色不同共A3即2個矩形顏色不同的概率為69故選:C.【點睛】本題考查了古典概型及概率計算公式,屬于基礎(chǔ)題.2、D【解析】
設(shè)a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【詳解】設(shè)a=3k,b=4k,c=5k,所以cosC=故選D【點睛】本題主要考查余弦定理,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.3、C【解析】
利用特殊值,對選項進(jìn)行排除,由此得到正確選項.【詳解】當(dāng)時,,由此排除D選項.當(dāng)時,,由此排除B選項.當(dāng)時,,由此排除A選項.綜上所述,本小題選C.【點睛】本小題主要考查分段函數(shù)求值,考查利用特殊值法解選擇題,屬于基礎(chǔ)題.4、A【解析】
由等比數(shù)列通項公式可構(gòu)造方程求得,再利用通項公式求得結(jié)果.【詳解】故選:【點睛】本題考查等比數(shù)列通項公式基本量的計算問題,考查基礎(chǔ)公式的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點:1、平面向量基本定理;2、余弦定理的應(yīng)用.6、B【解析】
求出樣本間隔,結(jié)合莖葉圖求出年齡不超過55歲的有8人,然后進(jìn)行計算即可.【詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數(shù)為人.故選:.【點睛】本題主要考查莖葉圖以及系統(tǒng)抽樣的應(yīng)用,求出樣本間隔是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7、B【解析】
根據(jù)不等式性質(zhì)確定選項.【詳解】當(dāng)時,不成立;因為,所以;當(dāng)時,不成立;當(dāng)時,不成立;所以選B.【點睛】本題考查不等式性質(zhì),考查基本分析判斷能力,屬基礎(chǔ)題.8、C【解析】
由兩直線平行的等價條件,即可得到本題答案.【詳解】因為,所以,解得或.故選:C【點睛】本題主要考查利用兩直線平行的等價條件求值.9、C【解析】
由給定的幾何體的三視圖得到該幾何體表示一個底面半徑為1,母線長為2的半圓柱,結(jié)合圓柱的體積公式,即可求解.【詳解】由題意,根據(jù)給定的幾何體的三視圖可得:該幾何體表示一個底面半徑為1,母線長為2的半圓柱,所以該半圓柱的體積為.故選:C.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.10、B【解析】
根據(jù)三棱錐三條側(cè)棱的關(guān)系,得到球與三棱錐的重疊部分為球的18【詳解】∵三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩互相垂直,且OA=OB=OC=2,以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的為球的18即對應(yīng)的體積為18【點睛】本題主要考查球體體積公式的應(yīng)用,解題的關(guān)鍵就是利用三棱錐與球的關(guān)系,考查空間想象能力,屬于中等題。二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】
由題意可知-2,3為方程x2【詳解】由題意可知-2,3為方程x2-x-a=0的兩根,則-2×3=-a,即故答案為:6【點睛】本題主要考查一元二次不等式的解,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、【解析】
根據(jù)模的計算公式可直接求解.【詳解】故填:.【點睛】本題考查了平面向量模的求法,屬于基礎(chǔ)題型.13、【解析】
直接利用誘導(dǎo)公式化簡求值.【詳解】,故答案為:.【點睛】本題考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.15、【解析】
將代入即可求解【詳解】令,可得.故答案為:【點睛】本題考查求數(shù)列的項,是基礎(chǔ)題16、.【解析】
將所給的函數(shù)利用降冪公式進(jìn)行恒等變形,然后求解其最小正周期即可.【詳解】函數(shù),周期為【點睛】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(I)將化簡整理成的形式,利用公式可求最小正周期;(II)根據(jù),可求的范圍,結(jié)合函數(shù)圖象的性質(zhì),可得參數(shù)的取值范圍.【詳解】(Ⅰ),所以的最小正周期為.(Ⅱ)由(Ⅰ)知.因為,所以.要使得在上的最大值為,即在上的最大值為1.所以,即.所以的最小值為.點睛:本題主要考查三角函數(shù)的有關(guān)知識,解題時要注意利用二倍角公式及輔助角公式將函數(shù)化簡,化簡時要注意特殊角三角函數(shù)值記憶的準(zhǔn)確性,及公式中符號的正負(fù).18、(1)或;(2)或.【解析】
(1)利用圓心在直線上設(shè)圓心坐標(biāo),利用相切列方程即可得解;(2)利用最大值為7確定圓,設(shè)點的坐標(biāo),找到到圓上點的最大距離列方程得解.【詳解】解:(1)設(shè)圓心的坐標(biāo)為,因為圓與直線相切,所以,即,解得或,故圓的方程為:,或;(2)由最大值等于可知,若圓的方程為,則的最小值為,故不故符合題意;所以圓的方程為:,設(shè),則,的最大值為:,得,解得或.故點的坐標(biāo)為或.【點睛】此題考查了圓方程的求法,點到圓上點的距離最值等,屬于中檔題.19、(1)函數(shù)的解析式為,其振幅是2,初相是(2)時,函數(shù)取得最大值0;時,函數(shù)取得最小值勤-2【解析】
(1)根據(jù)圖像寫出,由周期求出,再由點確定的值.(2)根據(jù)的取值范圍確定的取值范圍,再由的單調(diào)求出最值【詳解】(1)由圖象知,函數(shù)的最大值為2,最小值為-2,∴,又∵,∴,,∴.∴函數(shù)的解析式為.∵函數(shù)的圖象經(jīng)過點,∴,∴,又∵,∴.故函數(shù)的解析式為,其振幅是2,初相是.(2)∵,∴.于是,當(dāng),即時,函數(shù)取得最大值0;當(dāng),即時,函數(shù)取得最小值為-2.【點睛】本題考查由圖像確定三角函數(shù)、給定區(qū)間求三角函數(shù)的最值,屬于基礎(chǔ)題.20、(Ⅰ)幾何體為以為半徑,高的圓錐,(Ⅱ)【解析】
(Ⅰ)若以為軸,直角三角形旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,由圓錐的表面積公式,即可求出結(jié)果.(Ⅱ)利用側(cè)面展開圖,要使螞蟻爬行的最短距離,則沿點B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點B到點的距離,代入數(shù)值,即可求出結(jié)果.【詳解】解:(Ⅰ)在直角三角形ABC中,由即,得,若以為軸旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,則,其表面積為.(Ⅱ)由問題(Ⅰ)的圓錐,要使螞蟻爬行的最短距離,則沿點B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點B到點的距離,,在中,由余弦定理得:【點睛】本題考查了圓錐的表面積以及側(cè)面展開圖的應(yīng)用,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.21、(1)(2)【解析】
(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對于恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 應(yīng)城市七年級上學(xué)期語文期中試題
- 四年級數(shù)學(xué)(四則混合運算)計算題專項練習(xí)與答案匯編
- 分?jǐn)?shù)的初步認(rèn)識的說課稿
- 蹲踞式跳遠(yuǎn)說課稿初中
- 南京工業(yè)大學(xué)浦江學(xué)院《汽車構(gòu)造(下)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《相交線》初中數(shù)學(xué)說課稿
- 南京工業(yè)大學(xué)浦江學(xué)院《房屋建筑學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 約定工資結(jié)清協(xié)議書(2篇)
- 南京工業(yè)大學(xué)《巖體力學(xué)與工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 對課件分析教學(xué)課件
- 河南省南陽市2023-2024學(xué)年高一上學(xué)期期中數(shù)學(xué)試題含答案
- 2024年河南省軍隊文職(臨床醫(yī)學(xué))高頻備考核心試題庫(含答案詳解)
- 2023年國家公務(wù)員錄用考試《行測》副省級卷-解析
- 2024年銀行考試-招商銀行考試近5年真題附答案
- 2024年公開招聘大社區(qū)工作人員報名表
- 2024年上海市普通高中學(xué)業(yè)水平等級性考試(物理)附試卷分析
- 服務(wù)營銷《(第6版)》 課件 第5章 服務(wù)產(chǎn)品與服務(wù)品牌
- 甘肅省慶陽市2023-2024學(xué)年六年級上學(xué)期語文期中試卷(含答案)
- 廣州中醫(yī)藥大學(xué)-中藥學(xué)模擬試題
- 2024年高考政治考試題海南卷及參考答案
- 食品供應(yīng)商遴選制度(一)
評論
0/150
提交評論