




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南陽市重點中學2024年高三壓軸卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.2.設為虛數(shù)單位,則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.4.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)的模為()A. B.4 C.2 D.5.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.6.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關7.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.8.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.9.已知向量,,則向量在向量上的投影是()A. B. C. D.10.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或11.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種12.已知函數(shù),則()A. B.1 C.-1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足則的取值范圍是______.14.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.15.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.16.定義,已知,,若恰好有3個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.18.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.19.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.21.(12分)設函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).22.(10分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.2、A【解析】
利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.3、C【解析】
設,則,,,設,根據(jù)化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.4、D【解析】
由復數(shù)的綜合運算求出,再寫出其共軛復數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數(shù)的運算,考查共軛復數(shù)與模的定義,屬于基礎題.5、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.6、B【解析】
根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.7、B【解析】
據(jù)題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據(jù)坐標形式下向量的數(shù)量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.8、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質,考查向量知識,考查學生的計算能力,屬于中檔題.9、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.10、C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.11、C【解析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數(shù),即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結果,屬于??碱}型.12、A【解析】
由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應用,由數(shù)形結合法求線性目標函數(shù)的取值范圍,屬于中檔題.14、【解析】
根據(jù)分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.15、【解析】
討論裝球盒子的個數(shù),計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.16、【解析】
根據(jù)題意,分類討論求解,當時,根據(jù)指數(shù)函數(shù)的圖象和性質無零點,不合題意;當時,令,得,令,得或,再分當,兩種情況討論求解.【詳解】由題意得:當時,在軸上方,且為增函數(shù),無零點,至多有兩個零點,不合題意;當時,令,得,令,得或,如圖所示:當時,即時,要有3個零點,則,解得;當時,即時,要有3個零點,則,令,,所以在是減函數(shù),又,要使,則須,所以.綜上:實數(shù)的取值范圍是.故答案為:【點睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點問題,還考查了分類討論的思想和運算求解的能力,利用導數(shù)判斷函數(shù)單調性,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數(shù)方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.18、(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質定理的應用,以及求棱錐的體積,屬于中檔題.19、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數(shù)的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數(shù)絕對值三角不等式的應用問題,屬于常規(guī)題型.20、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標方程,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程,得出和關于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標方程得,即,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程得,,的面積為,當時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標方程求解三角形面積的最值問題,要熟悉極坐標方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.21、(1)a=1;(2)見解析【解析】
(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當x<a時,a﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西質量工程職業(yè)技術學院《民樂合奏》2023-2024學年第一學期期末試卷
- 江蘇安全技術職業(yè)學院《數(shù)字合成技術》2023-2024學年第二學期期末試卷
- 2025年福建省泉州聚龍外國語校中考化學試題仿真卷:化學試題試卷(4)含解析
- 山東服裝職業(yè)學院《系統(tǒng)解剖學》2023-2024學年第二學期期末試卷
- 上海對外經(jīng)貿大學《海洋生物學B》2023-2024學年第二學期期末試卷
- 2025年江蘇省南京師大附中中考英語試題命題比賽模擬試題含答案
- 浙江汽車職業(yè)技術學院《獸醫(yī)免疫學》2023-2024學年第二學期期末試卷
- 2025屆浙江省溫州十五校聯(lián)合體高三下學期大聯(lián)考卷Ⅱ歷史試題試卷含解析
- 常州信息職業(yè)技術學院《學前兒童衛(wèi)生學》2023-2024學年第一學期期末試卷
- 江蘇省鎮(zhèn)江市五校2024-2025學年全國卷Ⅱ英語試題中考模擬題含答案
- 2024年4月全國自考概率論與數(shù)理統(tǒng)計(一)02024真題及答案
- 《巖土工程勘察安全》課件
- 《宮頸癌防治》課件
- 小學數(shù)學:時間教材
- 220V直流容量計算書
- 腦卒中康復臨床路徑(PT)
- 鐵路客運段QC小組運用PDCA循環(huán)減少旅客列車乘降問題發(fā)生次數(shù)現(xiàn)場型成果匯報
- 紅外測溫培訓課件
- 四百字作文格子稿紙(可打印編輯)
- 醫(yī)院培訓課件:《基于醫(yī)院感染防控的安全注射》
- 私募股權投資PE
評論
0/150
提交評論