版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省雅安市雅安中學2025屆數(shù)學高一下期末經典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,分別是角,,的對邊,且滿足,那么的形狀一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形2.設函數(shù),則()A.2 B.4 C.8 D.163.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.4.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.285.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形6.如圖是某幾何體的三視圖,則該幾何體的外接球的表面積是()A. B. C. D.7.設某曲線上一動點到點的距離與到直線的距離相等,經過點的直線與該曲線相交于,兩點,且點恰為等線段的中點,則()A.6 B.10 C.12 D.148.已知數(shù)列的前項和為,滿足,則通項公式等于().A. B. C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.下列各角中與角終邊相同的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.12.己知函數(shù),,則的值為______.13.已知,則的最小值是__________.14.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.15.某小區(qū)擬對如圖一直角△ABC區(qū)域進行改造,在三角形各邊上選一點連成等邊三角形,在其內建造文化景觀.已知,則面積最小值為____16.有6根細木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.等差數(shù)列的各項均為正數(shù),,的前項和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項和.18.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結論.19.已知函數(shù).(1)求函數(shù)在上的最小值的表達式;(2)若函數(shù)在上有且只有一個零點,求的取值范圍.20.設函數(shù)和都是定義在集合上的函數(shù),對于任意的,都有成立,稱函數(shù)與在上互為“互換函數(shù)”.(1)函數(shù)與在上互為“互換函數(shù)”,求集合;(2)若函數(shù)(且)與在集合上互為“互換函數(shù)”,求證:;(3)函數(shù)與在集合且上互為“互換函數(shù)”,當時,,且在上是偶函數(shù),求函數(shù)在集合上的解析式.21.如圖,已知四棱錐,側面是正三角形,底面為邊長2的菱形,,.(1)設平面平面,求證:;(2)求多面體的體積;(3)求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由正弦定理,可得,.,或,或,即或,即三角形為等腰三角形或直角三角形,故選C.考點:1正弦定理;2正弦的二倍角公式.2、B【解析】
根據(jù)分段函數(shù)定義域,代入可求得,根據(jù)的值再代入即可求得的值.【詳解】因為所以所以所以選B【點睛】本題考查了根據(jù)定義域求分段函數(shù)的值,依次代入即可,屬于基礎題.3、B【解析】
利用橢圓的性質列出不等式求解即可.【詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點睛】本題考查橢圓的方程及簡單性質的應用,基本知識的考查.4、C【解析】
根據(jù)等差數(shù)列的求和與通項性質求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質運用,屬于基礎題.5、A【解析】
已知第一個等式利用正弦定理化簡,再利用誘導公式及內角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關鍵.6、B【解析】
由三視圖還原幾何體,可知該幾何體是由邊長為的正方體切割得到的四棱錐,可知所求外接球即為正方體的外接球,通過求解正方體外接球半徑,代入球的表面積公式可得到結果.【詳解】由三視圖可知,幾何體為如下圖所示的四棱錐:由上圖可知:四棱錐可由邊長為的正方體切割得到該正方體的外接球即為四棱錐的外接球四棱錐的外接球半徑外接球的表面積故選:【點睛】本題考查棱錐外接球表面積的求解問題,關鍵是能夠通過三視圖還原幾何體,并將幾何體放入正方體中,通過求解正方體的外接球表面積得到結果;需明確正方體外接球表面積為其體對角線長的一半.7、B【解析】由曲線上一動點到點的距離與到直線的距離相等知該曲線為拋物線,其方程為,分別過點向拋物線的準線作垂線,垂足分別為,由梯形的中位線定理知,所以,故選B.8、C【解析】
代入求得;根據(jù)可證得數(shù)列為等比數(shù)列,從而利用等比數(shù)列通項公式求得結果.【詳解】當時,當且時,則,即數(shù)列是以為首項,為公比的等比數(shù)列本題正確選項:【點睛】本題考查數(shù)列通項公式的求解,關鍵是能夠利用得到數(shù)列為等比數(shù)列,屬于常規(guī)題型.9、A【解析】
根據(jù)和之間能否推出的關系,得到答案.【詳解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要條件,故選:A.【點睛】本題考查充分不必要條件的判斷,屬于簡單題.10、D【解析】
寫出與終邊相同的角,取值得答案.【詳解】解:與終邊相同的角為,,取,得,與終邊相同.故選:D.【點睛】本題考查終邊相同角的表示法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點睛】本題主要考查了等差數(shù)列的性質.考查了學生創(chuàng)造性思維和解決問題的能力.12、1【解析】
將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.13、【解析】分析:利用題設中的等式,把的表達式轉化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當且僅當時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關兩個正數(shù)的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.14、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)15、【解析】
設,然后分別表示,利用正弦定理建立等式用表示,從而利用三角函數(shù)的性質得到的最小值,從而得到面積的最小值.【詳解】因為,所以,顯然,,設,則,且,則,所以,在中,由正弦定理可得:,求得,其中,則,因為,所以當時,取得最大值1,則的最小值為,所以面積最小值為,【點睛】本題主要考查了利用三角函數(shù)求解實際問題的最值,涉及到正弦定理的應用,屬于難題.對于這類型題,關鍵是能夠選取恰當?shù)膮?shù)表示需求的量,從而建立相關的函數(shù),利用函數(shù)的性質求解最值.16、【解析】
分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結合三棱錐的結構特征,即可求出結果.【詳解】當較長的兩條棱所在直線相交時,如圖所示:不妨設,,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當較長的兩條棱所在直線異面時,不妨設,,則,取CD的中點為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能構成三角形。所以此情況不存在。故答案為:.【點睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結構特征即可,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項公式和等差數(shù)列的前項和公式,由列出關于的方程組,解出的值,從而得到與的表達式.(2)根據(jù)數(shù)列的特點,可用錯位相減法求它的前項和,由(1)的結果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉化為等比數(shù)列的求和問題解決.試題解析:(1)設的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點:1、等差數(shù)列和等比數(shù)列;2、錯位相減法求特數(shù)列的前項和.18、(1)x2【解析】
(1)根據(jù)三角形周長為1,結合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當直線斜率斜存在時,聯(lián)立y=kx+b【詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當直線AB的斜率不存在,此時可設A(x3,x3),B(x3,-x3).又A,B兩點在橢圓C上,∴x0∴點O到直線AB的距離d=12當直線AB的斜率存在時,設直線AB的方程為y=kx+b.設A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點O到直線AB的距離d=b綜上可知:點O到直線AB的距離d=221【點睛】本題主要考查橢圓的定義及橢圓標準方程、圓錐曲線的定值問題以及點到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關;②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.19、(1);(2).【解析】
(1)求出函數(shù)的對稱軸方程,對實數(shù)分、、三種情況討論,分析函數(shù)在區(qū)間上的單調性,進而可得出函數(shù)在區(qū)間上的最小值的表達式;(2)對函數(shù)分情況討論:(i)方程在區(qū)間上有兩個相等的實根;(ii)①方程在區(qū)間只有一根;(②;③.可得出關于實數(shù)的等式或不等式,即可解得實數(shù)的取值范圍.【詳解】(1),其對稱軸為,當,即時,函數(shù)在區(qū)間上單調遞減,;當,即時,函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,;當時,即當時,函數(shù)在區(qū)間上單調遞增,.綜上所述:;(2)(i)若方程在上有兩個相等的實數(shù)根,則,此時無解;(ii)若方程有兩個不相等的實數(shù)根.①當只有一根在內時,,即,得;②當時,,方程化為,其根為,,滿足題意;③當時,,方程化為,其根為,,滿足題意.綜上所述,的取值范圍是.【點睛】本題考查二次函數(shù)在定區(qū)間上最值的計算,同時也考查了利用二次函數(shù)在區(qū)間上零點個數(shù)求參數(shù),考查分類討論思想的應用,屬于中等題.20、(1)(2)見解析(3),【解析】
(1)利用列方程,并用二倍角公式進行化簡,求得或,進而求得集合.(2)由,得(且),化簡后根據(jù)的取值范圍,求得的取值范圍.(3)首先根據(jù)為偶函數(shù),求得當時,的解析式,從而求得當時,的解析式.依題意“當,恒成立”,化簡得到,根據(jù)函數(shù)解析式的求法,求得時,以及,進而求得函數(shù)在集合上的解析式.【詳解】(1)由得化簡得,,所以或.由解得或,,即或,.又由解得,.所以集合,或,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產科門診護理工作計劃(3篇)
- 2023年滴眼劑項目綜合評估報告
- 高一個人實踐報告7篇
- 2024年數(shù)據(jù)中心基礎設施承包合同
- 2024年招投標行業(yè)自律與發(fā)展合同
- 2024年房屋產權過戶合同樣本
- 2024年應急電源項目施工合同
- 中小學交通安全宣傳方案(11篇)
- 2024年技術轉讓合同技術指標
- 《γδT細胞產生IL-17的亞群分析和誘導分化條件的探討》
- 二年級下冊語文試題 -“詩詞大會”題庫二 (word版有答案) 人教部編版
- GB/T 7702.20-2008煤質顆?;钚蕴吭囼灧椒兹莘e和比表面積的測定
- 新歷史主義文藝思潮
- GB/T 40120-2021農業(yè)灌溉設備灌溉用熱塑性可折疊軟管技術規(guī)范和試驗方法
- GB/T 3903.2-1994鞋類通用檢驗方法耐磨試驗方法
- GB/T 10801.2-2018絕熱用擠塑聚苯乙烯泡沫塑料(XPS)
- 12J5-1 平屋面建筑標準設計圖
- 中印邊境爭端
- 《墨梅》課件(省一等獎)
- 招聘與錄用期末考試卷及答案AB卷2套
- 實驗室基本技能培訓課件
評論
0/150
提交評論