




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河北省承德實驗中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓心為且過原點的圓的方程是()A.B.C.D.2.?dāng)?shù)列的通項公式為,若數(shù)列單調(diào)遞增,則的取值范圍為A. B. C. D.3.已知a、b是兩條不同的直線,、是兩個不同的平面,若,,,則下列三個結(jié)論:①、②、③.其中正確的個數(shù)為()A.0 B.1 C.2 D.34.已知直線l過點且與直線垂直,則l的方程是()A. B.C. D.5.公比為2的等比數(shù)列{}的各項都是正數(shù),且=16,則=()A.1 B.2 C.4 D.86.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡7.經(jīng)過平面外一點和平面內(nèi)一點與平面垂直的平面有()A.1個 B.2個 C.無數(shù)個 D.1個或無數(shù)個8.已知數(shù)列的前項和為,,且滿足,若,則的值為()A. B. C. D.9.函數(shù)的最小正周期為()A. B. C. D.10.設(shè)是周期為4的奇函數(shù),當(dāng)時,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個圓錐的側(cè)面積為,底面積為,則該圓錐的體積為________.12.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________13.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.14.已知數(shù)列的前n項和為,,且(),記(),若對恒成立,則的最小值為__.15.若函數(shù)的反函數(shù)的圖象過點,則________.16.已知等比數(shù)列的前項和為,若,且,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,直線.圓與軸交于兩點,是圓上不同于的一動點,所在直線分別與交于.(1)當(dāng)時,求以為直徑的圓的方程;(2)證明:以為直徑的圓截軸所得弦長為定值.18.已知圓圓心坐標(biāo)為點為坐標(biāo)原點,軸、軸被圓截得的弦分別為、.(1)證明:的面積為定值;(2)設(shè)直線與圓交于兩點,若,求圓的方程.19.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.20.已知直線恒過定點,圓經(jīng)過點和定點,且圓心在直線上.(1)求圓的方程;(2)已知點為圓直徑的一個端點,若另一端點為點,問軸上是否存在一點,使得為直角三角形,若存在,求出的值;若不存在,說明理由.21.設(shè)數(shù)列滿足.(1)求的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:設(shè)圓的方程為,且圓過原點,即,得,所以圓的方程為.故選D.考點:圓的一般方程.2、C【解析】
數(shù)列{an}單調(diào)遞增?an+1>an,可得:n+1+>n+,化簡解出即可得出.【詳解】數(shù)列{an}單調(diào)遞增?an+1>an,可得:n+1+>n+,化為:a<n1+n.∴a<1.故選C.【點睛】本題考查了等比數(shù)列的單調(diào)性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.3、C【解析】
根據(jù)題意,,,,則有,因此,,不難判斷.【詳解】因為,,,則有,所以,,所以①正確,②不正確,③正確,則其中正確命題的個數(shù)為2.故選C【點睛】本題考查空間中直線與平面之間的位置關(guān)系,考查空間推理能力,屬于簡單題.4、A【解析】
直線2x–3y+1=0的斜率為則直線l的斜率為所以直線l的方程為故選A5、A【解析】試題分析:在等比數(shù)列中,由知,,故選A.考點:等比數(shù)列的性質(zhì).6、B【解析】
概率的事件可以認為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.7、D【解析】
討論平面外一點和平面內(nèi)一點連線,與平面垂直和不垂直兩種情況.【詳解】(1)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線垂直底面,過直線的平面有無數(shù)多個與底面垂直;(2)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點和平面內(nèi)一點與平面垂直的平面有1個或無數(shù)個,故選D.【點睛】借助長方體研究空間中線、面位置關(guān)系問題,能使問題直觀化,降低問題的抽象性.8、D【解析】
由遞推關(guān)系可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求得公差;利用等差數(shù)列通項公式和前項和公式分別求得和,代入求得結(jié)果.【詳解】由得:數(shù)列為等差數(shù)列,設(shè)其公差為,,解得:,本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到利用遞推關(guān)系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項公式和前項和公式的應(yīng)用.9、D【解析】,函數(shù)的最小正周期為,選.【點睛】求三角函數(shù)的最小正周期,首先要利用三角公式進行恒等變形,化簡函數(shù)解析式,把函數(shù)解析式化為的形式,然后利用周期公式求出最小正周期,另外還要注意函數(shù)的定義域.10、A【解析】
.故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)圓錐的底面半徑為,母線長為,由圓錐的側(cè)面積、圓面積公式列出方程組求解,代入圓錐的體積公式求解.【詳解】設(shè)圓錐的底面半徑為,母線長為,其側(cè)面積為,底面積為,則,解得,,∴高===,∴==.故答案為:.【點睛】本題考查圓錐的體積的求法,考查圓錐的側(cè)面積、底面積、體積公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.12、【解析】因為圓心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.13、【解析】
設(shè),則,可得,然后利用基本不等式得到關(guān)于的一元二次方程解方程可得的最大值和最小值,進而得到結(jié)論.【詳解】∵x,y=R+,設(shè),則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點睛】本題考查了基本不等式的應(yīng)用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運算推理能力,屬于中檔題.14、【解析】
,即為首項為,公差為的等差數(shù)列,,,,由得,因為或時,有最大值,,即的最小值為,故答案為.【方法點晴】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.15、【解析】
由反函數(shù)的性質(zhì)可得的圖象過,將代入,即可得結(jié)果.【詳解】的反函數(shù)的圖象過點,的圖象過,故答案為.【點睛】本題主要考查反函數(shù)的基本性質(zhì),意在考查對基礎(chǔ)知識掌握的熟練程度,屬于基礎(chǔ)題.16、4或1024【解析】
當(dāng)時得到,當(dāng)時,代入公式計算得到,得到答案.【詳解】比數(shù)列的前項和為,當(dāng)時:易知,代入驗證,滿足,故當(dāng)時:故答案為:4或1024【點睛】本題考查了等比數(shù)列,忽略掉的情況是容易發(fā)生的錯誤.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)討論點的位置,根據(jù)直線的方程,直線的方程分別與直線方程聯(lián)立,得出的坐標(biāo),進而得出圓心坐標(biāo)以及半徑,即可得出該圓的方程;(2)討論點的位置,根據(jù)直角三角形的邊角關(guān)系得出的坐標(biāo),進而得出圓心坐標(biāo)以及半徑,再由圓的弦長公式化簡即可證明.【詳解】(1)由圓的方程可知,①當(dāng)點在第一象限時,如下圖所示當(dāng)時,,所以直線的方程為由,解得直線的方程為由,解得則的中點坐標(biāo)為,所以以為直徑的圓的方程為②當(dāng)點在第四象限時,如下圖所示當(dāng)時,,所以直線的方程為由,解得直線的方程為由,解得則的中點坐標(biāo)為,所以以為直徑的圓的方程為綜上,以為直徑的圓的方程為(2)①當(dāng)點在圓上半圓運動時,取直線交軸于點,如下圖所示設(shè),則則以為直徑的圓的圓心坐標(biāo)為,半徑所以以為直徑的圓截軸所得弦長為②當(dāng)點在圓下半圓運動時,取直線交軸于點,如下圖所示設(shè),則則以為直徑的圓的圓心坐標(biāo)為,半徑所以以為直徑的圓截軸所得弦長為綜上,以為直徑的圓截軸所得弦長為定值.【點睛】本題主要考查了求圓的方程以及圓的弦長公式的應(yīng)用,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)利用幾何條件可知,為直角三角形,且圓過原點,所以得知三角形兩直角邊邊長,求得面積;(2)由及原點O在圓上,知OCMN,所以,求出的值,再利用直線與圓的位置關(guān)系判斷檢驗,符合題意的解,最后寫出圓的方程.【詳解】(1)因為軸、軸被圓截得的弦分別為、,所以經(jīng)過,又為中點,所以,所以,所以的面積為定值.(2)因為直線與圓交于兩點,,所以的中垂線經(jīng)過,且過,所以的方程,所以,所以當(dāng)時,有圓心,半徑,所以圓心到直線的距離為,所以直線與圓交于點兩點,故成立;當(dāng)時,有圓心,半徑,所以圓心到直線的距離為,所以直線與圓不相交,故(舍去),綜上所述,圓的方程為.【點睛】本題通過直線與圓的有關(guān)知識,考查學(xué)生直觀想象和邏輯推理能力.解題注意幾何條件的運用可以簡化運算.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1);(2)見解析【解析】
(1)先求出直線過定點,設(shè)圓的一般方程,由題意列方程組,即可求圓的方程;(2)由(1)可知:求得直線的斜率,根據(jù)對稱性求得點坐標(biāo),由在圓外,所以點不能作為直角三角形的頂點,分類討論,即可求得的值.【詳解】(1)直線的方程可化為,由解得∴定點的坐標(biāo)為.設(shè)圓的方程為,則圓心則依題意有解得∴圓的方程為;(2)由(1)知圓的標(biāo)準(zhǔn)方程為,∴圓心,半徑.∵是直徑的兩個端點,∴圓心是與的中點,∵軸上的點在圓外,∴是銳角,即不是直角頂點.若是的直角頂點,則,得;若是的直角頂點,則,得.綜上所述,在軸上存在一點,使為直角三角形,或.【點睛】本題考查圓的方程的求法,直線與圓的位置關(guān)系,考查分類討論思想,屬于中檔題.21、(1);(1).【解析】
(1)在中,將代得:,由兩式作商得:,問題得解.(1)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項和公式及乘公比錯位相減法分別求和即可得解.【詳解】(1)由n=1得,因為,當(dāng)n≥1時,,由兩式作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CECS 10143-2021高分子量高密度聚乙烯(HMWHDPE)雙波峰纏繞結(jié)構(gòu)壁排水管
- T/CECS 10105-2020商用燃氣全預(yù)混冷凝熱水爐
- T/CCOA 23-2020食用鴨油
- T/CCMS 008-2024智能控制施工升降機安全技術(shù)規(guī)程
- T/CCAS 014.8-2022水泥企業(yè)安全管理導(dǎo)則第8部分:水泥工廠有限空間作業(yè)安全管理
- T/CBMCA 009-2019建材家居市場數(shù)字化管理技術(shù)規(guī)范
- T/CAQI 185-2021污水處理工程質(zhì)量管理導(dǎo)則
- 滴滴司機面試題及答案
- 分析工具考試題及答案
- 教師面試考試題及答案
- 【MOOC】森林食品資源學(xué)-南京林業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】學(xué)術(shù)英語寫作-東南大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】現(xiàn)代郵政英語(English for Modern Postal Service)-南京郵電大學(xué) 中國大學(xué)慕課MOOC答案
- 巨量千川營銷師(初級)認證考試復(fù)習(xí)題庫(含答案)
- 1學(xué)會尊重-《每個人都應(yīng)得到尊重》(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治四年級下冊
- 教室租賃合同范本教程
- 商用廚房設(shè)備搬遷實施方案
- 執(zhí)業(yè)藥師資格考試試題及答案
- 《供應(yīng)鏈管理》課件 第7章 供應(yīng)鏈運輸管理
- 書法測評基礎(chǔ)理論知識單選題100道及答案解析
- 內(nèi)部工程項目承包合同范本
評論
0/150
提交評論