版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省鎮(zhèn)江市高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.42.函數(shù)的最小值為(
)A.6 B.7 C.8 D.93.某船從處向東偏北方向航行千米后到達處,然后朝西偏南的方向航行6千米到達處,則處與處之間的距離為()A.千米 B.千米 C.3千米 D.6千米4.一個圓錐的表面積為,它的側(cè)面展開圖是圓心角為的扇形,該圓錐的母線長為()A. B.4 C. D.5.與圓關(guān)于直線對稱的圓的方程為()A. B.C. D.6.已知直線和互相平行,則它們之間的距離是()A. B. C. D.7.若三個實數(shù)a,b,c成等比數(shù)列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.48.設(shè)首項為,公比為的等比數(shù)列的前項和為,則()A. B. C. D.9.正四棱柱的高為3cm,體對角線長為cm,則正四棱柱的側(cè)面積為()A.10 B.24 C.36 D.4010.下列結(jié)論中錯誤的是()A.若,則 B.函數(shù)的最小值為2C.函數(shù)的最小值為2 D.若,則函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則_________.12.已知角的終邊上一點P的坐標(biāo)為,則____.13.等比數(shù)列滿足其公比_________________14.已知,且,則的取值范圍是____________.15.的內(nèi)角的對邊分別為.若,則的面積為__________.16.《九章算術(shù)》是體現(xiàn)我國古代數(shù)學(xué)成就的杰出著作,其中(方田)章給出的計算弧田面積的經(jīng)驗公式為:弧田面積(弦矢矢2),弧田(如圖陰影部分)由圓弧及其所對的弦圍成,公式中“弦”指圓弧所對弦的長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有弧長為米,半徑等于米的弧田,則弧所對的弦的長是_____米,按照上述經(jīng)驗公式計算得到的弧田面積是___________平方米.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.18.五一放假期間高速公路免費是讓實惠給老百姓,但也容易造成交通堵塞.在某高速公路上的某時間段內(nèi)車流量(單位:千輛/小時)與汽車的平均速度(單位:千米/小時)之間滿足的函數(shù)關(guān)系(為常數(shù)),當(dāng)汽車的平均速度為千米/小時時,車流量為千輛/小時.(1)在該時間段內(nèi),當(dāng)汽車的平均速度為多少時車流量達到最大值?(2)為保證在該時間段內(nèi)車流量至少為千輛/小時,則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?19.在中,內(nèi)角,,的對邊分別為,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面積為,求的值.20.已知等比數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列為遞增數(shù)列,數(shù)列滿足,求數(shù)列的前n項和.(3)在條件(2)下,若不等式對任意正整數(shù)n都成立,求的取值范圍.21.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點,是圓周上一點,且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點是線段上的點,且滿足,若直線平面,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎(chǔ)題.2、C【解析】
直接利用均值不等式得到答案.【詳解】,時等號成立.故答案選C【點睛】本題考查了均值不等式,屬于簡單題.3、B【解析】
通過余弦定理可得答案.【詳解】設(shè)處與處之間的距離為千米,由余弦定理可得,則.【點睛】本題主要考查余弦定理的實際應(yīng)用,難度不大.4、B【解析】
設(shè)圓錐的底面半徑為,母線長為,利用扇形面積公式和圓錐表面積公式,求出圓錐的底面圓半徑和母線長.【詳解】設(shè)圓錐的底面半徑為,母線長為它的側(cè)面展開圖是圓心角為的扇形又圓錐的表面積為,解得:母線長為:本題正確選項:【點睛】本題考查了圓錐的結(jié)構(gòu)特征與應(yīng)用問題,關(guān)鍵是能夠熟練應(yīng)用扇形面積公式和圓錐表面積公式,是基礎(chǔ)題.5、A【解析】
設(shè)所求圓的圓心坐標(biāo)為,列出方程組,求得圓心關(guān)于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標(biāo),設(shè)所求圓的圓心坐標(biāo)為,則圓心關(guān)于的對稱點,滿足,解得,即所求圓的圓心坐標(biāo)為,且半徑與圓相等,所以所求圓的方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準(zhǔn)確求解點關(guān)于直線的對稱點的坐標(biāo)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、D【解析】
由已知中直線和互相平行,求出的值,再根據(jù)兩條平行線間的距離公式求得它們之間的距離.【詳解】∵直線和互相平行,則,將直線的方程化為,則兩條平行直線之間的距離,===.故選:D.【點睛】本題主要考查兩條直線平行的性質(zhì),兩條平行線間的距離公式的應(yīng)用,屬于中檔題.7、C【解析】
由實數(shù)a,b,c成等比數(shù)列,得b2【詳解】由實數(shù)a,b,c成等比數(shù)列,得b2所以b=±2.故選C.【點睛】本題主要考查了等比數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.8、D【解析】Sn====3-2an.9、B【解析】
設(shè)正四棱柱,設(shè)底面邊長為,由正四棱柱體對角線的平方等于從同一頂點出發(fā)的三條棱的平方和,可得關(guān)于的方程.【詳解】如圖,正四棱柱,設(shè)底面邊長為,則,解得:,所以正四棱柱的側(cè)面積.【點睛】本題考查正棱柱的概念,即底面為正方形且側(cè)棱垂直于底面的幾何體,考查幾何體的側(cè)面積計算.10、B【解析】
根據(jù)均值不等式成立的條件逐項分析即可.【詳解】對于A,由知,,所以,故選項A本身正確;對于B,,但由于在時不可能成立,所以不等式中的“”實際上取不到,故選項B本身錯誤;對于C,因為,當(dāng)且僅當(dāng),即時,等號成立,故選項C本身正確;對于D,由知,,所以lnx+=-2,故選項D本身正確.故選B.【點睛】本題主要考查了均值不等式及不等式取等號的條件,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可得:點睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時簡化解題過程的關(guān)鍵所在.12、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.13、【解析】
觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點睛】本題主要考查等比數(shù)列公比的相關(guān)計算,難度很小.14、【解析】
利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】
本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識、基本方法、數(shù)學(xué)式子的變形及運算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點睛】本題涉及正數(shù)開平方運算,易錯點往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細心計算.16、【解析】
在中,由題意可知:,弧長為,即可以求出,則求得的值,根據(jù)題意可求矢和弦的值及弦長,利用公式可以完成.【詳解】如上圖在中,可得:,可以得:矢=所以:弧田面積(弦矢矢2)=所以填寫(1).(2).【點睛】本題是數(shù)學(xué)文化考題,扇形為載體的新型定義題,求弦長屬于簡單的解三角形問題,而作為第二空,我們首先知道公式中涉及到了“矢”,所以我們必須把“矢”的定義弄清楚,再借助定義求出它的值,最后只是簡單代入公式計算即能完成.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)詳見解析【解析】
(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(1)當(dāng)汽車的平均速度時車流量達到最大值。(2)【解析】
(1)首先根據(jù)題意求出,再利用基本不等式即可求出答案.(2)根據(jù)題意列出不等式,解不等式即可.【詳解】(1)有題知:,解得.所以,因為,當(dāng)且僅當(dāng)時,取“”.所以當(dāng)汽車的平均速度時車流量達到最大值.(2)有題知:,整理得:,解得:.所以當(dāng)時,在該時間段內(nèi)車流量至少為千輛/小時.【點睛】本題第一問考查利用基本不等式求最值,第二問考查了二次不等式的解法,屬于中檔題.19、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,化簡得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面積公式得,得到,再利用,即可求解.【詳解】(Ⅰ)由題意知,即,由正弦定理,得,①,由余弦定理,得,又因為,所以.(Ⅱ)因為,,由面積公式得,即.由①得,故,即.【點睛】本題考查正弦和余弦定理的應(yīng)用,屬于基礎(chǔ)題.20、(1)當(dāng)時:;當(dāng)時:(2)(3)【解析】
(1)直接利用等比數(shù)列公式得到答案.(2)利用錯位相減法得到答案.(3)將不等式轉(zhuǎn)化為,根據(jù)雙勾函數(shù)求數(shù)列的最大值得到答案.【詳解】(1)當(dāng)時:當(dāng)時:(2)數(shù)列為遞增數(shù)列,,兩式相加,化簡得到(3)設(shè)原式(為奇數(shù))根據(jù)雙勾函數(shù)知:或時有最大值.時,原式時,原式故【點睛】本題考查了等比數(shù)列的通項公式,錯位相減法求前N項和,恒成立問題,將恒成立問題轉(zhuǎn)化為利用雙勾函數(shù)求數(shù)列的最大值是解題的關(guān)鍵,此題綜合性強,計算量大,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.21、(1);(2)1【解析】
(1)取中點,連接,即為所求角。在中,易得MC,NC的長,MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點,連接,易得,所以為的中位線,所以為中點,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版新能源行業(yè)勞動合同模板與環(huán)保責(zé)任落實3篇
- 2024招投標(biāo)文件云計算技術(shù)研發(fā)技術(shù)標(biāo)范本范本3篇
- 2024年項目合作股權(quán)分配協(xié)議
- 2024年高新技術(shù)企業(yè)知識產(chǎn)權(quán)合同規(guī)范與管控方案3篇
- 2024版學(xué)校宿舍建筑工程承包施工合同
- 2024年遠程職工培訓(xùn)協(xié)議
- 2024版專業(yè)出租車租賃協(xié)議樣式
- 2024年度地坪漆施工項目合同變更及補充協(xié)議6篇
- 2024年職業(yè)技能培訓(xùn)協(xié)議3篇
- 2024年版貨物運輸合同匯編3篇
- 中華人民共和國建筑法
- 心里疏導(dǎo)課件教學(xué)課件
- 統(tǒng)編版2024-2025學(xué)年語文五年級上冊日積月累專項訓(xùn)練練習(xí)題
- 基于機器學(xué)習(xí)的供應(yīng)鏈風(fēng)險預(yù)測
- 2024-2025年職業(yè)技能:全國高速公路收費員從業(yè)資格知識考試題庫與答案
- 阜陽師范大學(xué)《法學(xué)概論》2023-2024學(xué)年期末試卷
- 新版中國食物成分表
- 2024河南鄭州市金水區(qū)事業(yè)單位招聘45人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 湘教版八年級音樂下冊教案全冊
- 食物損失和浪費控制程序
- 特種設(shè)備安全管理電梯模擬考核題庫888題(含標(biāo)準(zhǔn)答案)
評論
0/150
提交評論