安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷及答案解析_第1頁
安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷及答案解析_第2頁
安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷及答案解析_第3頁
安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷及答案解析_第4頁
安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省黃山市屯溪區(qū)屯溪第一中學(xué)高三第一次調(diào)研測試新高考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.2.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值3.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元4.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.5.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.36.達芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.7.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為則()A. B.C. D.8.設(shè)集合則()A. B. C. D.9.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.10.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.411.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.12.已知復(fù)數(shù),則的虛部是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)的和大于8而小于32,則______.14.在三棱錐P-ABC中,,,,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.15.?dāng)?shù)列滿足遞推公式,且,則___________.16.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大?。?8.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.19.(12分)已知為坐標(biāo)原點,單位圓與角終邊的交點為,過作平行于軸的直線,設(shè)與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.20.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.21.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標(biāo)軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.22.(10分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.2、D【解析】

A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因為,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).3、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.4、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.5、A【解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.6、A【解析】

由已知,設(shè).可得.于是可得,進而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.7、B【解析】

根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復(fù)數(shù)對應(yīng)點坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.8、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.9、B【解析】

求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點坐標(biāo)為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關(guān)的幾何性質(zhì),考查運算求解能力,屬于中檔題.10、B【解析】

設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.11、D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.12、C【解析】

化簡復(fù)數(shù),分子分母同時乘以,進而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關(guān)二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎(chǔ)題目.14、【解析】

先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.15、2020【解析】

可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題16、【解析】

由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標(biāo),代入拋物線方程中可求點的縱坐標(biāo),從而可求出點的坐標(biāo),再利用兩點間的距離公式可求得結(jié)果.【詳解】解:因為是拋物線的焦點,所以,設(shè)點的坐標(biāo)為,因為為的中點,而點的橫坐標(biāo)為0,所以,所以,解得,所以點的坐標(biāo)為所以,故答案為:【點睛】此題考查拋物線的性質(zhì),中點坐標(biāo)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標(biāo)系,計算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設(shè)平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設(shè)二面角的大小為,由圖知,,所以即二面角的大小為.18、(1),;(2).【解析】

(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.【點睛】本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.19、(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,所以函數(shù)的最小正周期為.(2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標(biāo)運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.20、(1),();(2).【解析】

(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論