平頂山市重點中學高三第一次調研測試新高考數學試卷及答案解析_第1頁
平頂山市重點中學高三第一次調研測試新高考數學試卷及答案解析_第2頁
平頂山市重點中學高三第一次調研測試新高考數學試卷及答案解析_第3頁
平頂山市重點中學高三第一次調研測試新高考數學試卷及答案解析_第4頁
平頂山市重點中學高三第一次調研測試新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

平頂山市重點中學高三第一次調研測試新高考數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為等差數列的前項和,若,則A. B.C. D.2.已知,則下列不等式正確的是()A. B.C. D.3.已知,且,則的值為()A. B. C. D.4.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.5.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產品供給,實現了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收均逐年增加B.2016年我國數字出版業(yè)營收超過2012年我國數字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數字出版營收占新聞出版營收的比例未超過三分之一6.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.27.已知(),i為虛數單位,則()A. B.3 C.1 D.58.如圖,在中,,是上的一點,若,則實數的值為()A. B. C. D.9.已知向量,,若,則與夾角的余弦值為()A. B. C. D.10.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.11.將函數的圖象沿軸向左平移個單位長度后,得到函數的圖象,則“”是“是偶函數”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、為正實數,直線截圓所得的弦長為,則的最小值為__________.14.執(zhí)行如圖所示的程序框圖,則輸出的結果是______.15.已知函數,在區(qū)間上隨機取一個數,則使得≥0的概率為.16.已知函數,則________;滿足的的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.18.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.19.(12分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數的取值范圍.20.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.21.(12分)已知函數(,)滿足下列3個條件中的2個條件:①函數的周期為;②是函數的對稱軸;③且在區(qū)間上單調.(Ⅰ)請指出這二個條件,并求出函數的解析式;(Ⅱ)若,求函數的值域.22.(10分)已知函數,.(1)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當x<0時,研究函數F(x)=h(x)﹣g(x)的零點個數;(3)求證:(參考數據:ln1.1≈0.0953).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據等差數列的性質可得,即,所以,故選C.2、D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.3、A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.4、A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.5、C【解析】

通過圖表所給數據,逐個選項驗證.【詳解】根據圖示數據可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數據分析,題目較為簡單.6、B【解析】

求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.7、C【解析】

利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.8、B【解析】

變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數.思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數的值.(2)直線的向量式參數方程:三點共線?(為平面內任一點,)9、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.10、D【解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.11、A【解析】

求出函數的解析式,由函數為偶函數得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數的圖象沿軸向左平移個單位長度,得到的圖象對應函數的解析式為,若函數為偶函數,則,解得,當時,.因此,“”是“是偶函數”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數解析式以及利用三角函數的奇偶性求參數,考查運算求解能力與推理能力,屬于中等題.12、B【解析】

利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據弦長,半徑,弦心距之間的關系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當且僅當時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關系,考核基本不等式求最值,關鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.14、1【解析】

該程序的功能為利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得:,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,此時滿足條件,退出循環(huán),輸出的值為1.故答案為:1.【點睛】本題考查程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,屬于基礎題.15、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.16、【解析】

首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】

由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設,則,根據弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設,則,所以,將,代入上式,整理得.【點睛】本題考查參數方程,極坐標方程的應用,結合弦長公式的運用,屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.19、(1);(2)【解析】

(1)利用兩邊平方法解含有絕對值的不等式,再根據根與系數的關系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數根即,解得(2)因為所以要使不等式恒成立,只需當時,,解得,即;當時,,解得,即;綜上所述,的取值范圍是【點睛】本題考查了含有絕對值的不等式解法與應用問題,也考查了分類討論思想,是中檔題.20、(1)或.(2)存在,;【解析】

(1)根據動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設,由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設,可得圓的半徑為,根據,可得方程為并化簡可得的軌跡方程為.設,,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標;方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標,根據到軸的距離可得等量關系,進而確定所過定點的坐標.【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關于于坐標原點對稱,所以在直線上,故可設.因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,因為拋物線的焦點坐標為,點在拋物線上,所以,線段的中點的坐標為,則到軸的距離為,而,故以為徑的圓與軸切,所以當點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標準方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應用,屬于難題.21、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數的值域為.【點睛】本題考查了三角函數的周期,對稱軸,單調性,值域,表達式,意在考查學生對于三角函數知識的綜合應用.22、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導數,討論a>1和a≤1,判斷導數的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導數和二階導數,判斷F'(x)的單調性,討論a≤﹣1,a>﹣1,F(x)的單調性和零點個數;(3)由(1)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當a=﹣1時,對x<0恒成立,令,結合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論