江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題含解析_第1頁
江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題含解析_第2頁
江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題含解析_第3頁
江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題含解析_第4頁
江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南通市通州區(qū)2025屆數(shù)學(xué)高一下期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),直線:.如果對(duì)任意的點(diǎn)到直線的距離均為定值,則點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為()A. B. C. D.2.若,且,則的值是()A. B. C. D.3.從裝有紅球和綠球的口袋內(nèi)任取2個(gè)球(其中紅球和綠球都多于2個(gè)),那么互斥而不對(duì)立的兩個(gè)事件是()A.至少有一個(gè)紅球,至少有一個(gè)綠球B.恰有一個(gè)紅球,恰有兩個(gè)綠球C.至少有一個(gè)紅球,都是紅球D.至少有一個(gè)紅球,都是綠球4.如圖所示是正方體的平面展開圖,在這個(gè)正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2aA.145 B.114 C.86.如圖,在正方體中,已知,分別為棱,的中點(diǎn),則異面直線與所成的角等于()A.90° B.60°C.45° D.30°7.一枚骰子連續(xù)投兩次,則兩次向上點(diǎn)數(shù)均為1的概率是()A. B. C. D.8.一個(gè)幾何體的三視圖如圖,則該幾何體的體積為()A. B. C.10 D.9.已知函數(shù)在區(qū)間上有最大值,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知等差數(shù)列前n項(xiàng)的和為,,,則()A.25 B.26 C.27 D.28二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,貨輪在海上以的速度沿著方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為150°的方向航行.為了確定船位,在點(diǎn)B觀察燈塔A的方位角是120°,航行半小時(shí)后到達(dá)C點(diǎn),觀察燈塔A的方位角是75°,則貨輪到達(dá)C點(diǎn)時(shí)與燈塔A的距離為______nmile12.?dāng)?shù)列是等比數(shù)列,,,則的值是________.13.如圖,長方體中,,,,與相交于點(diǎn),則點(diǎn)的坐標(biāo)為______________.14.已知,且是第一象限角,則的值為__________.15.等比數(shù)列中,,則公比____________.16.已知的圓心角所對(duì)的弧長等于,則該圓的半徑為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)當(dāng)時(shí),求的值;(2)設(shè)函數(shù),已知在中,內(nèi)角、、的對(duì)邊分別為、、,若,,,求的取值范圍.18.在銳角中,角,,所對(duì)的邊分別為,,,且.(1)求;(2)若的面積為8,,求的值.19.已知為等差數(shù)列,且,.求的通項(xiàng)公式;若等比數(shù)列滿足,,求的前n項(xiàng)和公式.20.如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E為PD的中點(diǎn),點(diǎn)F在PC上,且.(Ⅰ)求證:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)設(shè)點(diǎn)G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.21.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機(jī)選取一個(gè)向量,求的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用點(diǎn)到直線的距離公式表示出,由對(duì)任意的點(diǎn)到直線的距離均為定值,從而可得,求得直線的方程,再利用點(diǎn)關(guān)于直線對(duì)稱的性質(zhì)即可得到對(duì)稱點(diǎn)的坐標(biāo)?!驹斀狻坑牲c(diǎn)到直線的距離公式可得:點(diǎn)到直線的距離由于對(duì)任意的點(diǎn)到直線的距離均為定值,所以,即,所以直線的方程為:設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為故,解得:,所以設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為故答案選B【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于直線對(duì)稱的對(duì)稱點(diǎn)的求法,涉及點(diǎn)到直線的距離,兩直線垂直斜率的關(guān)系,中點(diǎn)公式等知識(shí)點(diǎn),考查學(xué)生基本的計(jì)算能力,屬于中檔題。2、A【解析】

對(duì)兩邊平方,可得,進(jìn)而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,又,所以所?故選:A.【點(diǎn)睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.3、B【解析】由于從口袋中任取2個(gè)球有三個(gè)事件,恰有一個(gè)紅球,恰有兩個(gè)綠球,一紅球和一綠球.所以恰有一個(gè)紅球,恰有兩個(gè)綠球是互斥而不對(duì)立的兩個(gè)事件.因而應(yīng)選B.4、C【解析】

把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補(bǔ)角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補(bǔ)角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點(diǎn)睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.5、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因?yàn)镾n=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時(shí)取等號(hào),此時(shí)∵m,n取整數(shù),∴均值不等式等號(hào)條件取不到,則1m驗(yàn)證可得,當(dāng)m=2,n=4時(shí),1m+9【點(diǎn)睛】本題主要考查等比數(shù)列的定義與通項(xiàng)公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)是否在定義域內(nèi),二是多次用≥或≤時(shí)等號(hào)能否同時(shí)成立).6、B【解析】

連接,可證是異面直線與所成的角或其補(bǔ)角,求出此角即可.【詳解】連接,因?yàn)椋謩e為棱,的中點(diǎn),所以,又正方體中,所以是異面直線與所成的角或其補(bǔ)角,是等邊三角形,=60°.所以異面直線與所成的角為60°.故選:B.【點(diǎn)睛】本題考查異面直線所成的角,解題時(shí)需根據(jù)定義作出異面直線所成的角,同時(shí)給出證明,然后在三角形中計(jì)算.7、D【解析】

連續(xù)投兩次骰子共有36種,求出滿足情況的個(gè)數(shù),即可求解.【詳解】一枚骰子投一次,向上的點(diǎn)數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點(diǎn)數(shù)均為1的有1種情況,概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率,屬于基礎(chǔ)題.8、B【解析】

由三視圖可知該幾何體為正四棱臺(tái),下底面邊長為4,上底面邊長為2,高為1.再由正四棱臺(tái)體積公式求解.【詳解】由三視圖可知該幾何體為正四棱臺(tái),下底面邊長為4,上底面邊長為2,高為1,所以,,∴該正四棱臺(tái)的體積.故選:B.【點(diǎn)睛】本題考查由三視圖求正四棱臺(tái)的體積,關(guān)鍵是由三視圖判斷出原幾何體的形狀,屬于基礎(chǔ)題.9、B【解析】因?yàn)?,所以由題設(shè)在只有一個(gè)零點(diǎn)且單調(diào)遞減,則問題轉(zhuǎn)化為,即,應(yīng)選答案B.點(diǎn)睛:解答本題的關(guān)鍵是如何借助題設(shè)條件建立不等式組,這是解答本題的難點(diǎn),也是解答好本題的突破口,如何通過解不等式使得問題巧妙獲解.10、C【解析】

根據(jù)等差數(shù)列的求和與通項(xiàng)性質(zhì)求解即可.【詳解】等差數(shù)列前n項(xiàng)的和為,故.故.故選:C【點(diǎn)睛】本題主要考查了等差數(shù)列通項(xiàng)與求和的性質(zhì)運(yùn)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過方位角定義,求出,,利用正弦定理即可得到答案.【詳解】根據(jù)題意,可知,,,因此可得,由正弦定理得:,求得,即答案為.【點(diǎn)睛】本題主要考查正弦定理的實(shí)際應(yīng)用,難度不大.12、【解析】

由題得計(jì)算得解.【詳解】由題得,所以.因?yàn)榈缺葦?shù)列同號(hào),所以.故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項(xiàng)的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.13、【解析】

易知是的中點(diǎn),求出的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式求解.【詳解】可知,,由中點(diǎn)坐標(biāo)公式得的坐標(biāo)公式,即【點(diǎn)睛】本題考查空間直角坐標(biāo)系和中點(diǎn)坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯(cuò)點(diǎn).14、;【解析】

利用兩角和的公式把題設(shè)展開后求得的值,進(jìn)而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導(dǎo)公式和對(duì)原式進(jìn)行化簡,把的值和題設(shè)條件代入求解即可.【詳解】,,即,,兩邊同時(shí)平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點(diǎn)睛】本題考查了兩角差的余弦公式、誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.15、【解析】

根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)為解題的關(guān)鍵,屬于簡單題.16、【解析】

先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點(diǎn)睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由共線向量的坐標(biāo)運(yùn)算化簡可得,將化切后代入即可(2)利用向量的坐標(biāo)運(yùn)算化簡,利用正弦定理求,根據(jù)角的范圍求值域即可.【詳解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范圍是.【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)運(yùn)算,三角恒等式,型函數(shù)的值域,屬于中檔題.18、(1)(2)【解析】

(1)利用正弦定理,將csinA=acosC轉(zhuǎn)化為,可得,從而可得角C的大?。?2)利用面積公式直接求解b即可【詳解】(1)由正弦定理得,因?yàn)樗詓inA>0,從而,即,又,所以;(2)由得b=8【點(diǎn)睛】本題考查三角函數(shù)中的恒等變換應(yīng)用,考查正弦定理的應(yīng)用,面積公式的應(yīng)用,考查化歸思想屬于中檔題.19、(1);(2).【解析】

設(shè)等差數(shù)列的公差為d,由已知列關(guān)于首項(xiàng)與公差的方程組,求得首項(xiàng)與公差,則的通項(xiàng)公式可求;求出,進(jìn)一步得到公比,再由等比數(shù)列的前n項(xiàng)和公式求解.【詳解】為等差數(shù)列,設(shè)公差為d,由已知可得,解得,.;由,,等比數(shù)列的公比,的前n項(xiàng)和公式.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查等比數(shù)列的前n項(xiàng)和,是中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)建立空間直角坐標(biāo)系,結(jié)合兩個(gè)半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得點(diǎn)G的坐標(biāo),然后結(jié)合平面的法向量和直線AG的方向向量可判斷直線是否在平面內(nèi).【詳解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,則PA⊥CD,由題意可知AD⊥CD,且PA∩AD=A,由線面垂直的判定定理可得CD⊥平面PAD.(Ⅱ)以點(diǎn)A為坐標(biāo)原點(diǎn),平面ABCD內(nèi)與AD垂直的直線為x軸,AD,AP方向?yàn)閥軸,z軸建立如圖所示的空間直角坐標(biāo)系,易知:,由可得點(diǎn)F的坐標(biāo)為,由可得,設(shè)平面AEF的法向量為:,則,據(jù)此可得平面AEF的一個(gè)法向量為:,很明顯平面AEP的一個(gè)法向量為,,二面角F-AE-P的平面角為銳角,故二面角F-AE-P的余弦值為.(Ⅲ)易知,由可得,則,注意到平面AEF的一個(gè)法向量為:,其且點(diǎn)A在平面AEF內(nèi),故直線AG在平面AEF內(nèi).21、(1);(2);(3).【解析】

(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標(biāo),求得向量對(duì)應(yīng)點(diǎn)的軌跡方程,將問題轉(zhuǎn)化為圓外一點(diǎn),到圓上一點(diǎn)的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時(shí),對(duì)應(yīng)的圓心角的大小,利用幾何概型的概率計(jì)算公式,即可求解.【詳解】(1)因?yàn)楣士傻茫獾芒佗谟散?②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論