上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第1頁
上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第2頁
上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第3頁
上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第4頁
上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市上海大學附屬中學2025屆高一下數(shù)學期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某學校高一、高二、高三教師人數(shù)分別為100、120、80,為了解他們在“學習強國”平臺上的學習情況,現(xiàn)用分層抽樣的方法抽取容量為45的樣本,則抽取高一教師的人數(shù)為()A.12 B.15 C.18 D.302.對于空間中的兩條直線,和一個平面,下列結論正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的圖象的一個對稱中心是()A. B. C. D.4.若兩個球的半徑之比為,則這兩球的體積之比為()A. B. C. D.5.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.6.已知直角三角形ABC,斜邊,D為AB邊上的一點,,,則CD的長為()A. B. C.2 D.37.函數(shù)的圖像大致為()A. B. C. D.8.已知,則的值等于()A. B. C. D.9.一個圓柱的底面直徑與高都等于球的直徑,設圓柱的側面積為,球的表面積為,則()A. B. C. D.110.圓與圓的位置關系為()A.相交 B.相離 C.相切 D.內含二、填空題:本大題共6小題,每小題5分,共30分。11.用數(shù)學歸納法證明“”,在驗證成立時,等號左邊的式子是______.12.已知,則__________.13.甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿開_______.14.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.15.在平面直角坐標系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.16.已有無窮等比數(shù)列的各項的和為1,則的取值范圍為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,各個側面均是邊長為的正方形,為線段的中點.(1)求證:直線平面;(2)求直線與平面所成角的余弦值;(3)設為線段上任意一點,在內的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.18.如圖,在平面四邊形中,已知,,在上取點,使得,連接,若,。(1)求的值;(2)求的長。19.已知的內角A,B,C所對的邊分別為a,b,c,且.(1)若,求的值;(2)若,求b,c的值.20.已知圓C:(x-1)2(1)當l經(jīng)過圓心C時,求直線l的方程;(2)當弦AB被點P平分時,寫出直線l的方程21.已知內角的對邊分別是,若,,.(1)求;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由分層抽樣方法即按比例抽樣,運算即可得解.【詳解】解:由分層抽樣方法可得抽取高一教師的人數(shù)為,故選:B.【點睛】本題考查了分層抽樣方法,屬基礎題.2、C【解析】

依次分析每個選項中兩條直線與平面的位置關系,確定兩條直線的位置關系即可.【詳解】平行于同一平面的兩條直線不一定相互平行,故選項A錯誤,平行于平面的直線不一定與該平面內的直線平行,故選項B錯誤,垂直于平面的直線,垂直于與該平面平行的所有線,故選項C正確,垂直于同一平面的兩條直線相互平行,故選項D錯誤.故選:C.【點睛】本題考查了直線與平面位置關系的辨析,屬于基礎題.3、B【解析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對稱中心坐標,可得出正確選項.【詳解】函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個對稱中心是,故選B.【點睛】本題考查圖象的變換以及三角函數(shù)的對稱中心,解題的關鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.4、C【解析】

根據(jù)球的體積公式可知兩球體積比為,進而得到結果.【詳解】由球的體積公式知:兩球的體積之比故選:【點睛】本題考查球的體積公式的應用,屬于基礎題.5、A【解析】試題分析:設扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.6、A【解析】

設,利用勾股定理求出的值即得解.【詳解】如圖,由于,所以設,所以所以.故選:A【點睛】本題主要考查解直角三角形,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、A【解析】

先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選:【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.8、B【解析】.9、D【解析】

由圓柱的側面積及球的表面積公式求解即可.【詳解】解:設圓柱的底面半徑為,則,則圓柱的側面積為,球的表面積為,則,故選:D.【點睛】本題考查了圓柱的側面積的求法,重點考查了球的表面積公式,屬基礎題.10、B【解析】

首先把兩個圓的一般方程轉化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關系是相離.故選:B【點睛】本題主要考查圓與圓的位置關系,比較圓心距和半徑的關系是解決本題的關鍵,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)左邊的式子是從開始,結束,且指數(shù)依次增加1求解即可.【詳解】因為左邊的式子是從開始,結束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點睛】項數(shù)的變化規(guī)律,是利用數(shù)學歸納法解答問題的基礎,也是易錯點,要使問題順利得到解決,關鍵是注意兩點:一是首尾兩項的變化規(guī)律;二是相鄰兩項之間的變化規(guī)律.12、【解析】13、【解析】甲、乙兩人下棋,只有三種結果,甲獲勝,乙獲勝,和棋;甲不輸,即甲獲勝或和棋,甲不輸?shù)母怕蕿?4、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.15、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式.16、【解析】

根據(jù)無窮等比數(shù)列的各項和表達式,將用公比表示,根據(jù)的范圍求解的范圍.【詳解】因為且,又,且,則.【點睛】本題考查無窮等比數(shù)列各項和的應用,難度一般.關鍵是將待求量與公比之間的關系找到,然后根據(jù)的取值范圍解決問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)存在點,使,詳見解析【解析】

(1)設與的交點為,證明進而證明直線平面.(2)先證明直線與平面所成角的為,再利用長度關系計算.(3)過點作,證明平面,即,所以存在.【詳解】(1)設與的交點為,顯然為中點,又點為線段的中點,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,點在平面上的投影為點,直線與平面所成角的為,,,,.(3)過點作,又因為平面,平面,所以,平面,平面,平面,,所以存在點,使.【點睛】本題考查了立體幾何線面平行,線面夾角,動點問題,將線線垂直轉化為線面垂直是解題的關鍵.18、(1);(2).【解析】試題分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.試題解析:(1)在中,據(jù)正弦定理,有.∵,,,∴.(2)由平面幾何知識,可知,在中,∵,,∴.∴.在中,據(jù)余弦定理,有∴點睛:此題考查了正弦定理、余弦定理的應用,利用正弦、余弦定理可以很好得解決了三角形的邊角關系,熟練掌握定理是解本題的關鍵.在中,涉及三邊三角,知三(除已知三角外)求三,可解出三角形,當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.19、(1);(2)【解析】

(1)先求出,再利用正弦定理可得結果;(2)由求出,再利用余弦定理解三角形.【詳解】(1)∵,且,∴,由正弦定理得,∴;(2)∵,∴,∴,由余弦定理得,∴.【點睛】本題考查正弦余弦定理解三角形,是基礎題.20、(1);(2)【解析】(1)已知圓C:(x-1)2(2)當弦AB被點P平分時,l⊥PC,直線l的方程為y-2=-121、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面積公式,即可求解三角形的面積.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論