江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題含解析_第1頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題含解析_第2頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題含解析_第3頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題含解析_第4頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“、、”成等比數(shù)列的()條件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要2.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.3.直線(,)過點(-1,-1),則的最小值為()A.9 B.1 C.4 D.104.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.20125.().A. B. C. D.6.已知向量,,則()A. B. C. D.7.《張丘建算經(jīng)》中如下問題:“今有馬行轉(zhuǎn)遲,次日減半,疾五日,行四百六十五里,問日行幾何?”根據(jù)此問題寫出如下程序框圖,若輸出,則輸入m的值為()A.240 B.220 C.280 D.2608.已知為銳角,且滿足,則()A. B. C. D.9.在中,內(nèi)角A,B,C所對的邊分別是a,b,c,若,,則的面積是()A. B. C. D.10.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結(jié)果是()A.7 B.21 C.35 D.49二、填空題:本大題共6小題,每小題5分,共30分。11.已知變量,滿足,則的最小值為________.12.已知向量(1,2),(x,4),且∥,則_____.13.利用數(shù)學歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.14.函數(shù)在的值域是______________.15.在數(shù)列中,若,則____.16.已知點P是矩形ABCD邊上的一動點,,,則的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知,求的值(2)若,,且,,求的值18.已知圓C過點,且圓心C在直線上.(1)求圓C的標準方程;(2)若過點(2,3)的直線被圓C所截得的弦的長是,求直線的方程.19.求過三點的圓的方程.20.若(1)化簡;(2)求函數(shù)的單調(diào)遞增區(qū)間.21.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;(3)設,記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用充分必要條件直接推理即可【詳解】若“、、”成等比數(shù)列,則;成立反之,若“”,如果a=b=G=0則、、”不成等比數(shù)列,故選B.【點睛】本題考查充分必要條件的判定,熟記等比數(shù)列的性質(zhì)是關鍵,是基礎題2、A【解析】

根據(jù)等比中項定義可得;利用和表示出等式,可構造方程求得;利用等差數(shù)列求和公式求得結(jié)果.【詳解】由題意得:設等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應用;關鍵是能夠構造方程求出公差,屬于??碱}型.3、A【解析】

將點的坐標代入直線方程:,再利用乘1法求最值【詳解】將點的坐標代入直線方程:,,當且僅當時取等號【點睛】已知和為定值,求倒數(shù)和的最小值,利用乘1法求最值。4、A【解析】

利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點共線的結(jié)論得出a1+【詳解】∵an+1=an∵三點A、B、C共線且該直線不過O點,OC=a1因此,S2010故選:A.【點睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點共線結(jié)論的應用,考查計算能力,屬于中等題.5、D【解析】

運用誘導公式進行化簡,最后逆用兩角和的正弦公式求值即可.【詳解】,故本題選D.【點睛】本題考查了正弦的誘導公式,考查了逆用兩角和的正弦公式,考查了特殊角的正弦值.6、D【解析】

根據(jù)平面向量的數(shù)量積,計算模長即可.【詳解】因為向量,,則,,故選:D.【點睛】本題考查了平面向量的數(shù)量積與模長公式的應用問題,是基礎題.7、A【解析】

根據(jù)程序框圖,依次循環(huán)計算,可得輸出的表達式.結(jié)合,由等比數(shù)列求和公式,即可求得的值.【詳解】由程序框圖可知,此時輸出.所以即由等比數(shù)列前n項和公式可得解得故選:A【點睛】本題考查了循環(huán)結(jié)構程序框圖的應用,等比數(shù)列求和的應用,屬于中檔題.8、D【解析】

由,得,,即可得到本題答案.【詳解】由,得,所以,,所以.故選:D【點睛】本題主要考查兩角和的正切公式的應用以及特殊角的三角函數(shù)值.9、C【解析】

根據(jù)題意,利用余弦定理可得ab,再利用三角形面積計算公式即可得出答案.【詳解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;則S△ABCabsinC;故選:C.【點睛】本題考查余弦定理、三角形面積計算公式,關鍵是利用余弦定理求出ab的值.10、B【解析】

模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結(jié)束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】

畫出可行域,分析目標函數(shù)得,當在y軸上截距最小時,即可求出的最小值.【詳解】作出可行域如圖:聯(lián)立得化目標函數(shù)為,由圖可知,當直線過點時,在y軸上的截距最小,有最小值為,故填.【點睛】本題主要考查了簡單的線性規(guī)劃,屬于中檔題.12、.【解析】

根據(jù)求得,從而可得,再求得的坐標,利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關系的應用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關系,以及向量的坐標運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、.【解析】

分析題意,根據(jù)數(shù)學歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當時,左邊,由此將其對時的式子進行對比,得到結(jié)果.【詳解】當時,左邊,當時,左邊,觀察可知,增加的項數(shù)是,故答案是.【點睛】該題考查的是有關數(shù)學歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應式子中的量,認真分析,明確哪些項是添的,得到結(jié)果.14、【解析】

利用,即可得出.【詳解】解:由已知,,又

,

故答案為:.【點睛】本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.15、【解析】

根據(jù)遞推關系式,依次求得的值.【詳解】由于,所以,.故答案為:【點睛】本小題主要考查根據(jù)遞推關系式求數(shù)列某一項的值,屬于基礎題.16、【解析】

如圖所示,以為軸,為軸建立直角坐標系,故,,設.,根據(jù)幾何意義得到最值,【詳解】如圖所示:以為軸,為軸建立直角坐標系,故,,設.則.表示的幾何意義為到點的距離的平方減去.根據(jù)圖像知:當為或的中點時,有最小值為;當與中的一點時有最大值為.故答案為:.【點睛】本題考查了向量的數(shù)量積的范圍,轉(zhuǎn)化為幾何意義是解題關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用誘導公式化簡可得:原式,再分子、分母同除以可得:原式,將代入計算得解.(2)將整理為:,利用兩角差的正弦公式整理得:,根據(jù)已知求出、即可得解.【詳解】解:(1)原式;(2)因為,,所以.又因為,所以,所以.于是.【點睛】本題主要考查了誘導公式及轉(zhuǎn)化思想,還考查了兩角差的正弦公式及同角三角函數(shù)基本關系,考查計算能力,屬于中檔題.18、(1);(2)或.【解析】

(1)設圓心,由兩點間的距離及圓心在直線上,列出方程組,求解即可求出圓心坐標,進而求出半徑,寫出圓的方程(2)由的長是,求出圓心到直線的距離,然后分直線斜率存在與不存在求解.【詳解】(1)設圓C的標準方程為依題意可得:解得,半徑.∴圓C的標準方程為;(2),∴圓心到直線m的距離①直線斜率不存在時,直線m方程為:;②直線m斜率存在時,設直線m為.,解得∴直線m的方程為∴直線m的方程為或.【點睛】本題主要考查了圓的標準方程,直線與圓的位置關系,點到直線的距離,屬于中檔題.19、【解析】

設圓的一般方程,利用待定系數(shù)法求解.【詳解】設圓的方程為經(jīng)過,所以,解得:,所以圓的方程為.【點睛】此題考查求圓的方程,根據(jù)圓上的三個點的坐標求圓的方程可以待定系數(shù)法求解,也可根據(jù)幾何意義分別求出圓心和半徑.20、(1)(2)【解析】

(1)利用利用誘導公式化簡得解析式,可的結(jié)果.(2)利用余弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)遞增區(qū)間.【詳解】(1).(2)令,,的單調(diào)遞增區(qū)間為.【點睛】本題考查利用誘導公式化簡求值、求余弦函數(shù)的單調(diào)區(qū)間,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,屬于基礎題.21、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函數(shù)的性質(zhì)得到關于實數(shù)k的方程,解方程即可,注意驗證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號即可;(3)可得,即可得:即可.【詳解】(1)由奇函數(shù)的性質(zhì)可得:,解方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論