吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省長春市第十一高中2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若角的終邊過點(diǎn),則()A. B. C. D.2.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.?dāng)?shù)列的極限不存在,的極限存在B.?dāng)?shù)列的極限存在,的極限不存在C.?dāng)?shù)列、的極限均存在,但極限值不相等D.?dāng)?shù)列、的極限均存在,且極限值相等3.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自黑色部分的概率為()A. B. C. D.4.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點(diǎn),且平面,,中點(diǎn)軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.5.如圖,矩形ABCD中,AB=2,AD=1,P是對角線AC上一點(diǎn),,過點(diǎn)P的直線分別交DA的延長線,AB,DC于點(diǎn)M,E,N.若(m>0,n>0),則2m+3n的最小值是()A. B.C. D.6.某學(xué)生用隨機(jī)模擬的方法推算圓周率的近似值,在邊長為的正方形內(nèi)有一內(nèi)切圓,向正方形內(nèi)隨機(jī)投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內(nèi),則該學(xué)生得到圓周率的近似值為()A. B. C. D.7.下列函數(shù)中周期為,且圖象關(guān)于直線對稱的函數(shù)是()A. B.C. D.8.已知三棱錐,若平面,,,,則三棱錐外接球的表面積為()A. B. C. D.9.在中,,,,則B等于()A.或 B. C. D.以上答案都不對10.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若一個(gè)圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.12.過點(diǎn),且與直線垂直的直線方程為.13.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時(shí),___________.14.若集合,,則集合________.15.若點(diǎn),是圓C:上不同的兩點(diǎn),且,則的值為______.16.已知數(shù)列中,,,則數(shù)列通項(xiàng)___________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,(1)求的最小正周期;(2)若,求的最大值和最小值,并寫出相應(yīng)的x的值.18.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機(jī)輸入一個(gè)值,求輸出的值小于0的概率.19.已知圓過點(diǎn)和,且圓心在直線上.(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)求直線:被圓截得的弦長.20.如圖,是正方形,是正方形的中心,底面是的中點(diǎn).(1)求證:平面;(2)若,求三棱錐的體積.21.如圖,在四棱錐中,平面,底面是棱長為的菱形,,,是的中點(diǎn).(1)求證://平面;(2)求直線與平面所成角的正切值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

解法一:利用三角函數(shù)的定義求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函數(shù)的定義求出,再利用二倍角公式以及弦化切的思想求出的值.【詳解】解法一:由三角函數(shù)的定義可得,,,故選D.解法二:由三角函數(shù)定義可得,所以,,故選D.【點(diǎn)睛】本題考查三角函數(shù)的定義與二倍角公式,考查同角三角函數(shù)的定義,利用三角函數(shù)的定義求值是解本題的關(guān)鍵,同時(shí)考查了同角三角函數(shù)基本思想的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】

分別考慮與的極限,然后作比較.【詳解】因?yàn)?,又,所以?shù)列、的極限均存在,且極限值相等,故選D.【點(diǎn)睛】本題考查數(shù)列的極限的是否存在的判斷以及計(jì)算,難度一般.注意求解的極限時(shí),若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.3、B【解析】

設(shè)正方形的邊長為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)正方形的邊長為,則陰影部分由三個(gè)小等腰直角三角形構(gòu)成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應(yīng)每個(gè)小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點(diǎn),則此點(diǎn)取自黑色部分的概率為,故選:B.【點(diǎn)睛】本題考查面積型幾何概型概率公式計(jì)算事件的概率,解題的關(guān)鍵在于計(jì)算出所求事件對應(yīng)區(qū)域的面積和總區(qū)域的面積,考查計(jì)算能力,屬于中等題.4、D【解析】

設(shè)的中點(diǎn)分別為,判斷出中點(diǎn)的軌跡是等邊三角形的高,由此計(jì)算出正三棱柱的邊長,進(jìn)而計(jì)算出正三棱柱的體積.【詳解】設(shè)的中點(diǎn)分別為,連接.由于平面,所以.當(dāng)時(shí),中點(diǎn)為平面的中心,即的中點(diǎn)(設(shè)為點(diǎn))處.當(dāng)時(shí),此時(shí)的中點(diǎn)為的中點(diǎn).所以點(diǎn)的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點(diǎn)睛】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計(jì)算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.5、C【解析】設(shè),則又當(dāng)且僅當(dāng)時(shí)取等號,故選點(diǎn)睛:在利用基本不等式求最值的時(shí)候,要特別注意“拆,拼,湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù)),“定”(不等式的另一邊必須為定值),“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.6、B【解析】

由落入圓內(nèi)的芝麻數(shù)占落入正方形區(qū)域內(nèi)的芝麻數(shù)的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【詳解】邊長為的正方形內(nèi)有一內(nèi)切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學(xué)生得到圓周率的近似值為,故選:B.【點(diǎn)睛】本題考查利用隨機(jī)模擬思想求圓周率的近似值,解題的關(guān)鍵就是利用概率相等結(jié)合幾何概型的概率公式列等式求解,考查計(jì)算能力,屬于基礎(chǔ)題.7、B【解析】因?yàn)?,所以選項(xiàng)A,B,C,D的周期依次為又當(dāng)時(shí),選項(xiàng)A,B,C,D的值依次為所以只有選項(xiàng)A,B關(guān)于直線對稱,因此選B.考點(diǎn):三角函數(shù)性質(zhì)8、B【解析】

根據(jù)題意畫出三棱錐的圖形,將其放入一個(gè)長方體中,容易知道三棱錐的外接球半徑,利用球的表面積公式求解即可.【詳解】根據(jù)題意畫出三棱錐如圖所示,把三棱錐放入一個(gè)長方體中,三棱錐的外接球即這個(gè)長方體的外接球,長方體的外接球半徑等于體對角線的一半,所以三棱錐的外接球半徑,三棱錐的外接球的表面積.故選:B【點(diǎn)睛】本題主要考查三棱錐的外接球問題,對于三棱錐三條棱有兩兩垂直的情況,可以考慮將其放入一個(gè)長方體中求解外接球半徑,屬于基礎(chǔ)題.9、C【解析】試題分析:由正弦定理得,得,結(jié)合得,故選C.考點(diǎn):正弦定理.10、A【解析】

連交于,連,根據(jù)正四棱錐的定義可得平面,取中點(diǎn),連,則由側(cè)面積和底面邊長,求出側(cè)面等腰三角形的高,在中,求出,即可求解.【詳解】連交于,連,取中點(diǎn),連因?yàn)檎睦忮F,則平面,,側(cè)面積,在中,,.故選:A.【點(diǎn)睛】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.12、【解析】

直線垂直表示斜率乘積為-1,所以可得新直線斜率,代入點(diǎn)即可.【詳解】直線的斜率等于-1,所以與之垂直直線斜率,再通過點(diǎn)斜式直線方程:,即.【點(diǎn)睛】此題考查直線垂直,直線垂直表示兩直線斜率之積為-1,屬于簡單題目.13、【解析】

由三角形的面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),取得最大值,,,由余弦定理得,解得.故答案為.【點(diǎn)睛】本題考查余弦定理解三角形,同時(shí)也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時(shí),需要結(jié)合已知條件得出定值條件,同時(shí)要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.14、【解析】由題意,得,,則.15、【解析】

由,再結(jié)合坐標(biāo)運(yùn)算即可得解.【詳解】解:因?yàn)辄c(diǎn),是圓C:上不同的兩點(diǎn),則,,又所以,即,故答案為:.【點(diǎn)睛】本題考查了向量模的運(yùn)算,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.16、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項(xiàng)公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項(xiàng),以為公差的等差數(shù)列,∴,∴.故答案為.點(diǎn)睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式外,還有一種常用方法:對遞推式化簡變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項(xiàng)公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)時(shí)最大值為2,時(shí)最小值【解析】

(1)由二倍角公式和輔助角公式可得,再由周期公式,可得所求值(2)由的范圍,可得的范圍,由于余弦函數(shù)的圖象和性質(zhì),可得所求最值.【詳解】(1)函數(shù),可得的最小正周期為;(2),,可得,,可得當(dāng)即時(shí),可得取得最大值2;當(dāng),即時(shí),可得取得最小值.【點(diǎn)睛】本題考查二倍角公式和兩角差的余弦函數(shù),考查余弦函數(shù)的圖象和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)【解析】

(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達(dá)式,從而計(jì)算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,,(2)當(dāng)時(shí),,當(dāng)時(shí),由得故所求概率為【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,算法框圖的理解,意在考查學(xué)生分析問題的能力.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)設(shè)出圓心坐標(biāo)和圓的標(biāo)準(zhǔn)方程,將點(diǎn)帶入求出結(jié)果即可;(Ⅱ)利用圓心到直線的距離和圓的半徑解直角三角形求得弦長.【詳解】解:(Ⅰ)由題意可設(shè)圓心坐標(biāo)為,則圓的標(biāo)準(zhǔn)方程為,∴解得故圓的標(biāo)準(zhǔn)方程為.(Ⅱ)圓心到直線的距離,∴直線被圓截得的弦長為.【點(diǎn)睛】本題考查了圓的方程,以及直線與圓相交求弦長的知識,屬于基礎(chǔ)題.20、(1)證明見解析;(2).【解析】

(1)由平面得出,由底面為正方形得出,再利用直線與平面垂直的判定定理可證明平面;(2)由勾股定理計(jì)算出,由點(diǎn)為線段的中點(diǎn)得知點(diǎn)到平面的距離等于,并計(jì)算出的面積,最后利用錐體的體積公式可計(jì)算出三棱錐的體積.【詳解】(1)平面,平面,,又為正方形,,又平面,平面,,平面;(2)由題意知:,又,,,點(diǎn)到面的距離為,.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查三棱錐體積的計(jì)算,在計(jì)算三棱錐的體積時(shí),充分利用題中的線面垂直關(guān)系和平面與平面垂直的關(guān)系,尋找合適的底面和高來進(jìn)行計(jì)算,考查計(jì)算能力與推理能力,屬于中等題.21、(1)見解析(2)【解析】

(1)連接交于點(diǎn),則為的中點(diǎn),由中位線的性質(zhì)得出,再利用直線與平面平行的判定定理得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論