福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省福清福清華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.《五曹算經(jīng)》是我國(guó)南北朝時(shí)期數(shù)學(xué)家甄鸞為各級(jí)政府的行政人員編撰的一部實(shí)用算術(shù)書(shū).其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問(wèn)粟幾何?”其意思為“場(chǎng)院內(nèi)有圓錐形稻谷堆,底面周長(zhǎng)3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛2.已知m,n是兩條不同的直線(xiàn),是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則3.為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.簡(jiǎn)單隨機(jī)抽樣 B.按性別分層抽樣C.按學(xué)段分層抽樣 D.系統(tǒng)抽樣4.的內(nèi)角的對(duì)邊分別為,若的面積為,則()A. B. C. D.5.某學(xué)生四次模擬考試時(shí),其英語(yǔ)作文的減分情況如下表:考試次數(shù)x

1

2

3

4

所減分?jǐn)?shù)y

4.5

4

3

2.5

顯然所減分?jǐn)?shù)y與模擬考試次數(shù)x之間有較好的線(xiàn)性相關(guān)關(guān)系,則其線(xiàn)性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.256.向量,,,滿(mǎn)足條件.,則A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.若正數(shù)滿(mǎn)足,則的最小值為A. B.C. D.39.如圖,為了測(cè)量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測(cè)得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.10.某幾何體的三視圖如下圖所示(單位:cm)則該幾何體的表面積(單位:)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前n項(xiàng)和為,若,則的值為_(kāi)_____________.12.已知向量夾角為,且,則__________.13.若,則=_________________14.已知內(nèi)接于拋物線(xiàn),其中O為原點(diǎn),若此內(nèi)接三角形的垂心恰為拋物線(xiàn)的焦點(diǎn),則的外接圓方程為_(kāi)____.15.某工廠(chǎng)甲、乙、丙三個(gè)車(chē)間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從丙車(chē)間的產(chǎn)品中抽取了3件,則n=.16.下圖是2016年在巴西舉行的奧運(yùn)會(huì)上,七位評(píng)委為某體操運(yùn)動(dòng)員的單項(xiàng)比賽打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,四邊形是邊長(zhǎng)為2的正方形,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.18.已知等差數(shù)列滿(mǎn)足,.(1)求的通項(xiàng)公式;(2)各項(xiàng)均為正數(shù)的等比數(shù)列中,,,求的前項(xiàng)和.19.如圖,邊長(zhǎng)為2的正方形中.(1)點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求證:;(2)當(dāng)時(shí),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求三棱錐的體積.20.已知函數(shù),且.(1)求常數(shù)及的最大值;(2)當(dāng)時(shí),求的單調(diào)遞增區(qū)間.21.已知向量,,.(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)記的內(nèi)角的對(duì)邊分別為.若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)圓錐的周長(zhǎng)求出底面半徑,再計(jì)算圓錐的體積,從而估算堆放的稻谷數(shù).【詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長(zhǎng)為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【點(diǎn)睛】本題考查了椎體的體積計(jì)算問(wèn)題,也考查了實(shí)際應(yīng)用問(wèn)題,是基礎(chǔ)題.2、C【解析】

利用線(xiàn)面垂直、線(xiàn)面平行、面面垂直的性質(zhì)定理分別對(duì)選項(xiàng)分析選擇.【詳解】對(duì)于A,若,,則或者;故A錯(cuò)誤;對(duì)于B,若,則可能在內(nèi)或者平行于;故B錯(cuò)誤;對(duì)于C,若,,,過(guò)分作平面于,作平面,則根據(jù)線(xiàn)面平行的性質(zhì)定理得,,∴,根據(jù)線(xiàn)面平行的判定定理,可得,又,,根據(jù)線(xiàn)面平行的性質(zhì)定理可得,又,∴;故C正確;對(duì)于D.若,,則與可能垂直,如墻角;故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了面面垂直、線(xiàn)面平行、線(xiàn)面垂直的性質(zhì)定理及應(yīng)用,涉及空間線(xiàn)線(xiàn)平行的傳遞性,考查了空間想象能力,熟練運(yùn)用定理是關(guān)鍵.3、C【解析】試題分析:符合分層抽樣法的定義,故選C.考點(diǎn):分層抽樣.4、C【解析】

由題意可得,化簡(jiǎn)后利用正弦定理將“邊化為角“即可.【詳解】解:的面積為,,,故選:C.【點(diǎn)睛】本題主要考查正弦定理的應(yīng)用和三角形的面積公式,屬于基礎(chǔ)題.5、D【解析】試題分析:先求樣本中心點(diǎn),利用線(xiàn)性回歸方程一定過(guò)樣本中心點(diǎn),代入驗(yàn)證,可得結(jié)論.解:先求樣本中心點(diǎn),,由于線(xiàn)性回歸方程一定過(guò)樣本中心點(diǎn),代入驗(yàn)證可知y=﹣0.7x+5.25,滿(mǎn)足題意故選D.點(diǎn)評(píng):本題考查線(xiàn)性回歸方程,解題的關(guān)鍵是利用線(xiàn)性回歸方程一定過(guò)樣本中心點(diǎn),屬于基礎(chǔ)題.6、C【解析】向量,則,故解得.故答案為:C。7、C【解析】

通過(guò)三視圖可以判斷這一個(gè)是半個(gè)圓柱與半個(gè)圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個(gè)組合體的體積.【詳解】該幾何體為半個(gè)圓柱與半個(gè)圓錐形成的組合體,故,故選C.【點(diǎn)睛】本題考查了利用三視圖求組合體圖形的體積,考查了運(yùn)算能力和空間想象能力.8、A【解析】

由,利用基本不等式,即可求解,得到答案.【詳解】由題意,因?yàn)?,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以的最小值為,故選A.【點(diǎn)睛】本題主要考查了利用基本不等式求最小值問(wèn)題,其中解答中合理構(gòu)造,利用基本不是準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、B【解析】

過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點(diǎn)睛】本題考查了解三角形的應(yīng)用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.10、C【解析】

通過(guò)三視圖的觀(guān)察可得到該幾何體是由一個(gè)圓錐加一個(gè)圓柱得到的,表面積由一個(gè)圓錐的表面積和一個(gè)圓柱的側(cè)面積組成【詳解】圓柱的側(cè)面積為,圓錐的表面積為,其中,,。選C【點(diǎn)睛】幾何體的表面積一定要看清楚哪些面存在,哪些面不存在二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由等差數(shù)列的性質(zhì)可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點(diǎn)睛】本題考查了等差數(shù)列的前n項(xiàng)和公式與等差數(shù)列性質(zhì)的綜合應(yīng)用,屬于基礎(chǔ)題.12、【解析】試題分析:的夾角,,,,.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)晴】平面向量的數(shù)量積計(jì)算問(wèn)題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問(wèn)題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡(jiǎn)的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問(wèn)題、線(xiàn)段長(zhǎng)問(wèn)題及垂直問(wèn)題轉(zhuǎn)化為向量的數(shù)量積來(lái)解決.列出方程組求解未知數(shù).13、【解析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點(diǎn)睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個(gè)公式后選用哪個(gè)公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過(guò)這個(gè)關(guān)系都能選用恰當(dāng)?shù)墓剑?4、【解析】

由拋物線(xiàn)的對(duì)稱(chēng)性知A、B關(guān)于x軸對(duì)稱(chēng),設(shè)出它們的坐標(biāo),利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線(xiàn)MN的方程,即可求出點(diǎn)C的坐標(biāo),問(wèn)題得以解決.【詳解】∵拋物線(xiàn)關(guān)于x軸對(duì)稱(chēng),內(nèi)接三角形的垂心恰為拋物線(xiàn)的焦點(diǎn),三邊上的高過(guò)焦點(diǎn),∴另兩個(gè)頂點(diǎn)A,B關(guān)于x軸對(duì)稱(chēng),即△ABO是等腰三角形,作AO的中垂線(xiàn)MN,交x軸與C點(diǎn),而Ox是AB的中垂線(xiàn),故C點(diǎn)即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點(diǎn)為(,),且MN∥BF,∴直線(xiàn)MN的方程為y(x),當(dāng)x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點(diǎn),∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點(diǎn)睛】本題考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查了兩直線(xiàn)垂直與斜率的關(guān)系,是中檔題15、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個(gè)車(chē)間依次抽取a,b,c個(gè)樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.16、【解析】由平均數(shù)公式可得,故所求數(shù)據(jù)的方差是,應(yīng)填答案。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】

(1)先由線(xiàn)面垂直的判定定理得到平面,進(jìn)而可得平面平面;(2)先取中點(diǎn),連結(jié),,證明平面平面,在平面內(nèi)作于點(diǎn),則平面.以點(diǎn)為原點(diǎn),為軸,為軸,如圖建立空間直角坐標(biāo)系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【詳解】(1)因?yàn)樗倪呅问钦叫?,所以折起后,且,因?yàn)?,所以是正三角形,所?又因?yàn)檎叫沃?,為的中點(diǎn),所以,所以,所以,所以,又因?yàn)?,所以平?又平面,所以平面平面.(2)取中點(diǎn),連結(jié),,則,,又,則平面.又平面,所以平面平面.在平面內(nèi)作于點(diǎn),則平面.以點(diǎn)為原點(diǎn),為軸,為軸,如圖建立空間直角坐標(biāo)系.在中,,,.∴,,故,,,∴,.設(shè)平面的一個(gè)法向量為,則由,得,令,得,,∴.因?yàn)槠矫娴姆ㄏ蛄繛?,則,又二面角為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題主要考查面面垂直的判定,以及二面角的余弦值,熟記面面垂直的判定定理、以及二面角的向量求法即可,屬于??碱}型.18、(1);(2).【解析】試題分析:(1)求{an}的通項(xiàng)公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通項(xiàng)公式;(2)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列的公比為q(q>0),利用等比數(shù)列的通項(xiàng)公式可求首項(xiàng)及公比q,代入等比數(shù)列的前n項(xiàng)和公式可求Tn.試題解析:(1)設(shè)等差數(shù)列{an}的公差為d,則由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)設(shè)等比數(shù)列{bn}的公比為q,則由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比數(shù)列{bn}的各項(xiàng)均為正數(shù),∴q=2.∴{bn}的前n項(xiàng)和Tn===19、(1)證明見(jiàn)解析;(2)【解析】

(1)折疊過(guò)程中,,保持不變,即,,由此可得線(xiàn)面垂直,從而有線(xiàn)線(xiàn)垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點(diǎn)睛】本題考查證明線(xiàn)線(xiàn)垂直,考查求棱錐的體積.立體幾何中證明線(xiàn)線(xiàn)垂直,通常由線(xiàn)面垂直的性質(zhì)定理給出,即先證線(xiàn)面垂直,而證線(xiàn)面垂直又必須證明線(xiàn)線(xiàn)垂直,注意線(xiàn)線(xiàn)垂直與線(xiàn)面垂直的轉(zhuǎn)化.三棱錐中任何一個(gè)面都可以當(dāng)作底面,因此一般尋找高易得的面為底面,常用換底法求體積.20、(1),(2)遞增區(qū)間為.【解析】

(1)由二倍角公式降冪,再由求出,然后由兩角和的余弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合余弦函數(shù)單調(diào)性可得最大值;(2)由(1)結(jié)合余弦函數(shù)性質(zhì)可得增區(qū)間.【詳解】(1),由得,,即.∴,當(dāng)時(shí),即時(shí),.(2)由,得,又,所以,所以遞增區(qū)間為.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的余弦公式,考查余弦函數(shù)的性質(zhì).三角函數(shù)問(wèn)題一般都要由三角恒等變換化為一個(gè)角的一個(gè)三角函數(shù)形式,然后利用正弦函數(shù)或余弦函數(shù)性質(zhì)求解.21、(1)最小正周期為,單調(diào)遞減區(qū)間為;(2)或【解析】

(1)由向量的數(shù)量積的運(yùn)算公式和三角恒等變換的公式化簡(jiǎn)可得,再結(jié)合三角函數(shù)的性質(zhì),即可求解.(2)由(1),根據(jù),解得,利用正弦定理,求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論