版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省揚州江都區(qū)六校聯(lián)考2023-2024學年中考數(shù)學考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.2.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.3.下列圖案中,是軸對稱圖形的是()A. B. C. D.4.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°5.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.6.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°7.化簡:(a+)(1﹣)的結(jié)果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.8.等腰三角形底角與頂角之間的函數(shù)關(guān)系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)9.如圖,直線y=kx+b與y=mx+n分別交x軸于點A(﹣1,0),B(4,0),則函數(shù)y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>410.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.111.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣212.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.14.現(xiàn)有三張分別標有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(a,b)在直線圖象上的概率為__.15.如圖,10塊相同的小長方形墻磚拼成一個大長方形,設小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.16.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側(cè)面積為______cm217.計算(x4)2的結(jié)果等于_____.18.關(guān)于的分式方程的解為正數(shù),則的取值范圍是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結(jié)論).20.(6分)反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點A(1,2k﹣1).求反比例函數(shù)的解析式;若一次函數(shù)與x軸交于點B,且△AOB的面積為3,求一次函數(shù)的解析式.21.(6分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結(jié)果即可).22.(8分)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)(2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)(測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.4°≈2)23.(8分)先化簡,后求值:,其中.24.(10分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數(shù)的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.25.(10分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.求反比例函數(shù)的解析式;若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.26.(12分)某汽車廠計劃半年內(nèi)每月生產(chǎn)汽車20輛,由于另有任務,每月上班人數(shù)不一定相等,實每月生產(chǎn)量與計劃量相比情況如下表(增加為正,減少為負)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?半年內(nèi)總生產(chǎn)量是多少?比計劃多了還是少了,增加或減少多少?27.(12分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當2≤x≤6時,如圖,此時y=×2×2=2,(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.2、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應用.3、B【解析】
根據(jù)軸對稱圖形的定義,逐一進行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點睛】本題考查的是軸對稱圖形的定義.4、B【解析】
根據(jù)平行線的性質(zhì)得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質(zhì)和平行線的性質(zhì),熟記它們的性質(zhì)是解題的關(guān)鍵.5、C【解析】
連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.6、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質(zhì),熟知兩直線平行,同位角相等是解答此題的關(guān)鍵.7、B【解析】
解:原式====.故選B.考點:分式的混合運算.8、B【解析】
根據(jù)一次函數(shù)的定義,可得答案.【詳解】設等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關(guān)系是一次函數(shù)關(guān)系,故選B.【點睛】本題考查了實際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關(guān)系式是解題的關(guān)鍵.9、C【解析】
看兩函數(shù)交點坐標之間的圖象所對應的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點睛】本題主要考查一次函數(shù)和一元一次不等式,本題是借助一次函數(shù)的圖象解一元一次不等式,兩個圖象的“交點”是兩個函數(shù)值大小關(guān)系的“分界點”,在“分界點”處函數(shù)值的大小發(fā)生了改變.10、A【解析】
因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.【點睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.11、B【解析】分析:首先得到當點E旋轉(zhuǎn)至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉(zhuǎn)至y軸上時DE最??;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.12、B【解析】
根據(jù)函數(shù)的圖象和交點坐標即可求得結(jié)果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,
故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.14、【解析】
根據(jù)題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結(jié)果,根據(jù)一次函數(shù)的性質(zhì)求出在圖象上的點,即可得出答案.【詳解】畫樹狀圖得:
∵共有6種等可能的結(jié)果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),
∴點(a,b)在圖象上的概率為.【點睛】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.15、【解析】
根據(jù)圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是看懂圖示,分別表示出長方形的長和寬.16、60π【解析】
圓錐的側(cè)面積=π×底面半徑×母線長,把相應數(shù)值代入即可求解.解:圓錐的側(cè)面積=π×6×10=60πcm1.17、x1【解析】分析:直接利用冪的乘方運算法則計算得出答案.詳解:(x4)2=x4×2=x1.故答案為x1.點睛:本題主要考查了冪的乘方運算,正確掌握運算法則是解題的關(guān)鍵.18、且.【解析】
方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點:四邊形綜合題.20、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結(jié)果;
(2)根據(jù)三角形的面積等于3,求得點B的坐標,代入一次函數(shù)y=mx+b即可得到結(jié)果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數(shù)的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=﹣.所以符合條件的一次函數(shù)解析式為:y=﹣或y=x+.21、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.22、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.詳解:過P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,設PF=5x,CF=1x,∵四邊形BFPE為矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的鉛直高度約為14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:從P到點B的路程約為17.1米.點睛:本題考查了解直角三角形的應用,關(guān)鍵是正確的畫出與實際問題相符合的幾何圖形,找出圖形中的相關(guān)線段或角的實際意義及所要解決的問題,構(gòu)造直角三角形,用勾股定理或三角函數(shù)求相應的線段長.23、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值.24、(1)反比例函數(shù)的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數(shù)的表達式;(2)作點D關(guān)于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數(shù)y=,
得k=3,
∴反比例函數(shù)的表達式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 乒乓球用品行業(yè)銷售工作總結(jié)
- 酒店旅游行業(yè)行政后勤工作總結(jié)
- 線描基本技法課程設計
- 圖文制作行業(yè)前臺接待工作總結(jié)
- 三年高考地理(全國乙卷21-23)真題知識點-人口與城市
- 組織學生參加競賽活動計劃
- 2023-2024學年北京市清華大學附中朝陽學校高一(下)期中語文試卷
- DB32T 3393-2018 警務效能監(jiān)察工作規(guī)范
- 網(wǎng)絡零售店店員工作總結(jié)
- 服務管理培訓
- 中小企業(yè)內(nèi)部控制與風險管理(第二版)項目一:內(nèi)部控制與風險管理基礎(chǔ)
- 駕駛艙資源管理緒論課件
- 聲藝 EPM8操作手冊
- 西北農(nóng)林科技大學專業(yè)學位研究生課程案例庫建設項目申請書(MBA)
- 外墻保溫、真石漆施工技術(shù)交底
- 車床日常點檢表
- 配網(wǎng)工程施工監(jiān)理管理要點~.docx
- 國內(nèi)No.7信令方式技術(shù)規(guī)范----綜合業(yè)務數(shù)字網(wǎng)用戶部分(ISUP)
- 尾礦庫在線監(jiān)測方案)
- 房屋安全簡易鑒定表.docx
- FSSC運營管理制度(培訓管理辦法)
評論
0/150
提交評論