2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題含解析_第1頁
2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題含解析_第2頁
2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題含解析_第3頁
2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題含解析_第4頁
2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年湖北省黃石市黃石十四中學教育集團中考沖刺卷數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<42.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.143.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°4.2018年春運,全國旅客發(fā)送量達29.8億人次,用科學記數(shù)法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10105.如圖,直線y=kx+b與y軸交于點(0,3)、與x軸交于點(a,0),當a滿足-3≤a<0時,k的取值范圍是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥36.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或137.下列立體圖形中,主視圖是三角形的是()A. B. C. D.8.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.19.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=210.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm11.下列四個實數(shù)中,比5小的是()A. B. C. D.12.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時x千米,則可列方程為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設(shè)有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.14.如圖,“人字梯”放在水平的地面上,當梯子的一邊與地面所夾的銳角為時,兩梯角之間的距離BC的長為周日亮亮幫助媽媽整理換季衣服,先使為,后又調(diào)整為,則梯子頂端離地面的高度AD下降了______結(jié)果保留根號.15.因式分解:=___.16.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.17.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.18.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結(jié)論.20.(6分)如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;在圖2中畫出線段AB的垂直平分線.21.(6分)某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.22.(8分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.23.(8分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.求BF的長.24.(10分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.25.(10分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.26.(12分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.27.(12分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)一元一次不等式的解法,移項,合并同類項,系數(shù)化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數(shù)化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握一元一次不等式的解法.2、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.3、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定4、B【解析】

根據(jù)科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),且為這個數(shù)的整數(shù)位數(shù)減1,由此即可解答.【詳解】29.8億用科學記數(shù)法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、C【解析】

解:把點(0,2)(a,0)代入y=kx+b,得b=2.則a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式,屬于綜合題,難度不大.6、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據(jù)三角形的三邊關(guān)系求解即可.解方程x2-6x+8=0得x=2或x=4當x=2時,三邊長為2、3、6,而2+3<6,此時無法構(gòu)成三角形當x=4時,三邊長為4、3、6,此時可以構(gòu)成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關(guān)系點評:解題的關(guān)鍵是熟記三角形的三邊關(guān)系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.7、A【解析】

考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看8、D【解析】

過A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.9、A【解析】

將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.【點睛】此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.10、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.11、A【解析】

首先確定無理數(shù)的取值范圍,然后再確定是實數(shù)的大小,進而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.【點睛】考查無理數(shù)的估算,掌握無理數(shù)估算的方法是解題的關(guān)鍵.通常使用夾逼法.12、D【解析】解:設(shè)動車速度為每小時x千米,則可列方程為:﹣=.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.14、【解析】

根據(jù)題意畫出圖形,進而利用銳角三角函數(shù)關(guān)系得出答案.【詳解】解:如圖1所示:

過點A作于點D,

由題意可得:,

則是等邊三角形,

故BC,

則,

如圖2所示:

過點A作于點E,

由題意可得:,

則是等腰直角三角形,,

則,

故梯子頂端離地面的高度AD下降了

故答案為:.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確畫出圖形利用銳角三角三角函數(shù)關(guān)系分析是解題關(guān)鍵.15、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關(guān)鍵.16、【解析】

先求出球的總數(shù),再根據(jù)概率公式求解即可.【詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數(shù)=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.【點睛】本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.17、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.18、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)如圖所示見解析;(2)四邊形OCED是菱形.理由見解析.【解析】

(1)根據(jù)圖形平移的性質(zhì)畫出平移后的△DEC即可;

(2)根據(jù)圖形平移的性質(zhì)得出AC∥DE,OA=DE,故四邊形OCED是平行四邊形,再由矩形的性質(zhì)可知OA=OB,故DE=CE,由此可得出結(jié)論.【詳解】(1)如圖所示;(2)四邊形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四邊形OCED是平行四邊形.∵四邊形ABCD是矩形,∴OA=OB,∴DE=CE,∴四邊形OCED是菱形.【點睛】本題考查了作圖與矩形的性質(zhì),解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與根據(jù)題意作圖.20、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題.(2)根據(jù)正方形、長方形的性質(zhì)對角線相等且互相平分,即可解決問題.試題解析:(1)如圖所示,∠ABC=45°.(AB、AC是小長方形的對角線).(2)線段AB的垂直平分線如圖所示,點M是長方形AFBE是對角線交點,點N是正方形ABCD的對角線的交點,直線MN就是所求的線段AB的垂直平分線.考點:作圖—應(yīng)用與設(shè)計作圖.21、(1)不可能事件;(2).【解析】

試題分析:(1)根據(jù)隨機事件的概念即可得“小李同學在該天早餐得到兩個油餅”是不可能事件;(2)根據(jù)題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學在該天早餐得到兩個油餅”是不可能事件;(2)樹狀圖法即小張同學得到豬肉包和油餅的概率為.考點:列表法與樹狀圖法.22、2.7米.【解析】

先根據(jù)勾股定理求出AB的長,同理可得出BD的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【點睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.23、BF的長度是1cm.【解析】

利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應(yīng)邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質(zhì),關(guān)鍵要掌握:有兩角對應(yīng)相等的兩三角形相似;兩三角形相似,對應(yīng)邊的比相等.24、(1)見解析(2)當AF=時,四邊形BCEF是菱形.【解析】

(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF與點G,∵四邊形BCEF是平行四邊形,∴當BE⊥CF時,四邊形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴當AF=時,四邊形BCEF是菱形.25、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論