版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列方程中,為一元二次方程的是()A.x=2 B.x+y=3 C. D.2.如圖,以原點O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)3.在Rt△ABC中,∠C=900,∠B=2∠A,則cosB等于()A. B. C. D.4.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、65.如圖,在一幅長80cm,寬50cm的矩形樹葉畫四周鑲一條金色的紙邊,制成一幅矩形掛圖,若要使整個掛圖的面積是5400cm2,設金色紙邊的寬為xcm,則滿足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54006.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.217.下列是一元二次方程有()①;②;③;④.A. B. C. D.8.如果、是一元二次方程的兩根,則的值是()A.3 B.4 C.5 D.69.與三角形三個頂點距離相等的點,是這個三角形的()A.三條中線的交點B.三條角平分線的交點C.三條高的交點D.三邊的垂直平分線的交點10.為解決群眾看病貴的問題,有關部門決定降低藥價,原價為30元的藥品經過連續(xù)兩次降價,價格變?yōu)?4.3元,則平均每次降價的百分率為()A.10% B.15% C.20% D.25%11.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.12.對于二次函數(shù),下列說法不正確的是()A.其圖象的對稱軸為過且平行于軸的直線.B.其最小值為1.C.其圖象與軸沒有交點.D.當時,隨的增大而增大.二、填空題(每題4分,共24分)13.如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為cm.14.一元二次方程的兩根之積是_________.15.已知二次函數(shù)(為常數(shù)),當取不同的值時,其圖象構成一個“拋物線系”.如圖分別是當取四個不同數(shù)值時此二次函數(shù)的圖象.發(fā)現(xiàn)它們的頂點在同一條直線上,那么這條直線的表達式是_________.16.已知,相似比為,且的面積為,則的面積為__________.17.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.18.如圖,分別以正五邊形ABCDE的頂點A,D為圓心,以AB長為半徑畫,若,則陰影部分圖形的周長為______結果保留.三、解答題(共78分)19.(8分)問題提出:如圖1,在等邊△ABC中,AB=9,⊙C半徑為3,P為圓上一動點,連結AP,BP,求AP+BP的最小值(1)嘗試解決:為了解決這個問題,下面給出一種解題思路,通過構造一對相似三角形,將BP轉化為某一條線段長,具體方法如下:(請把下面的過程填寫完整)如圖2,連結CP,在CB上取點D,使CD=1,則有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴當A,P,D三點共線時,AP+PD取到最小值請你完成余下的思考,并直接寫出答案:AP+BP的最小值為.(2)自主探索:如圖3,矩形ABCD中,BC=6,AB=8,P為矩形內部一點,且PB=1,則AP+PC的最小值為.(請在圖3中添加相應的輔助線)(3)拓展延伸:如圖1,在扇形COD中,O為圓心,∠COD=120°,OC=1.OA=2,OB=3,點P是上一點,求2PA+PB的最小值,畫出示意圖并寫出求解過程.20.(8分)如圖,在直角三角形ABC中,∠C=90°,點D是AC邊上一點,過點D作DE⊥BD,交AB于點E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的長.21.(8分)有一只拉桿式旅行箱(圖1),其側面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當點B距離水平地面34cm時,點C到水平地面的距離CE為55cm.設AF∥MN.(1)求⊙A的半徑.(2)當人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).22.(10分)如圖,在坐標系中,拋物線經過點和,與軸交于點.直線.拋物線的解析式為.直線的解析式為;若直線與拋物線只有一個公共點,求直線的解析式;設拋物線的頂點關于軸的對稱點為,點是拋物線對稱軸上一動點,如果直線與拋物線在軸上方的部分形成了封閉圖形(記為圖形).請結合函數(shù)的圖象,直接寫出點的縱坐標的取值范圍.23.(10分)如圖,△ABC中,AB=AC=10,BC=6,求sinB的值.24.(10分)先化簡:,再求代數(shù)式的值,其中是方程的一個根.25.(12分)如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點,且分別與x軸的正半軸交于點B,點A,OA=2OB.(1)求拋物線C2的解析式;(2)在拋物線C2的對稱軸上是否存在點P,使PA+PC的值最???若存在,求出點P的坐標,若不存在,說明理由;(3)M是直線OC上方拋物線C2上的一個動點,連接MO,MC,M運動到什么位置時,△MOC面積最大?并求出最大面積.26.如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD.(2)求證:CE∥AD;(3)若AD=4,AB=6,求AF的值.
參考答案一、選擇題(每題4分,共48分)1、C【解析】本題根據(jù)一元二次方程的定義解答.一元二次方程必須滿足四個條件:未知數(shù)的最高次數(shù)是2;二次項系數(shù)不為0;是整式方程;含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、x=2是一元一次方程,故A錯誤;B、x+y=3是二元一次方程,故B錯誤;C、是一元二次方程,故C正確;D、是分式方程,故D錯誤;故選:C.【點睛】本題考查的是一元二次方程的定義,掌握一元二次方程的定義是關鍵.2、C【解析】過P作PQ⊥OB,交OB于點Q,在直角三角形OPQ中,利用銳角三角函數(shù)定義表示出OQ與PQ,即可確定出P的坐標.解:過P作PQ⊥OB,交OB于點Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,則P的坐標為(cosα,sinα),故選C.3、B【詳解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故選B【點睛】本題考查三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.4、D【詳解】5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.5、B【詳解】根據(jù)題意可得整副畫的長為(80+2x)cm,寬為(50+2x)cm,則根據(jù)長方形的面積公式可得:(80+2x)(50+2x)=1.故應選:B考點:一元二次方程的應用6、A【分析】根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.7、A【解析】根據(jù)一元二次方程的定義:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式是一元二次方程.然后對每個方程作出準確的判斷.【詳解】解:①符合一元二次方程的定義,故正確;②方程二次項系數(shù)可能為0,故錯誤;③整理后不含二次項,故錯誤;④不是整式,故錯誤,故選:A.【點睛】本題考查的是一元二次方程的定義,根據(jù)定義對每個方程進行分析,然后作出準確的判斷.8、B【解析】先求得函數(shù)的兩根,再將兩根帶入后面的式子即可得出答案.【詳解】由韋達定理可得α+β=-3,又=3--=)=1+3=4,所以答案選擇B項.【點睛】本題考察了二次方程的求根以及根的意義和根與系數(shù)的關系,根據(jù)得到的等量關系是解決本題的關鍵.9、D【分析】可分別根據(jù)線段垂直平分線的性質進行思考,首先滿足到A點、B點的距離相等,然后思考滿足到C點、B點的距離相等,都分別在各自線段的垂直平分線上,于是答案可得.【詳解】解:如圖:∵OA=OB,∴O在線段AB的垂直平分線上,∵OB=OC,∴O在線段BC的垂直平分線上,∵OA=OC,∴O在線段AC的垂直平分線上,又三個交點相交于一點,∴與三角形三個頂點距離相等的點,是這個三角形的三邊的垂直平分線的交點.故選:D.【點睛】此題主要考查垂直平分線的性質,解題的關鍵是熟知線段垂直平分線上的點到線段兩個端點距離相等.10、A【分析】設平均每次降價的百分率為x,根據(jù)該藥品的原價及經過兩次降價后的價格,即可得出關于x的一元二次方程,解之取其較小值即可得出結論.【詳解】設平均每次降價的百分率為x,依題意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).故選:A.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.11、D【分析】由折疊的性質可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.【點睛】本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關鍵.12、D【分析】先將二次函數(shù)變形為頂點式,然后可根據(jù)二次函數(shù)的性質判斷A、B、D三項,再根據(jù)拋物線的頂點和開口即可判斷C項,進而可得答案.【詳解】解:,所以拋物線的對稱軸是直線:x=3,頂點坐標是(3,1);A、其圖象的對稱軸為過且平行于軸的直線,說法正確,本選項不符合題意;B、其最小值為1,說法正確,本選項不符合題意;C、因為拋物線的頂點是(3,1),開口向上,所以其圖象與軸沒有交點,說法正確,本選項不符合題意;D、當時,隨的增大而增大,說法錯誤,所以本選項符合題意.故選:D.【點睛】本題考查了二次函數(shù)的圖象和性質,屬于基本題型,熟練掌握拋物線的性質是解題的關鍵.二、填空題(每題4分,共24分)13、.【解析】根據(jù)切線的性質可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質).又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內錯角相等).又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定).∴∠BOC=60°(等邊三角形的每個內角等于60°).又∵⊙O的半徑為6cm,∴劣弧的長=(cm).14、【分析】根據(jù)一元二次方程兩根之積與系數(shù)的關系可知.【詳解】解:根據(jù)題意有兩根之積x1x2==-1.
故一元二次方程-x2+3x+1=0的兩根之積是-1.
故答案為:-1.【點睛】本題重點考查了一元二次方程根與系數(shù)的關系,是基本題型.兩根之積x1x2=.15、【分析】已知拋物線的頂點式,寫出頂點坐標,用x、y代表頂點的橫坐標、縱坐標,消去a得出x、y的關系式.【詳解】解:二次函數(shù)中,頂點坐標為:,設頂點坐標為(x,y),∴①,②,由①2+②,得,∴;故答案為:.【點睛】本題考查了二次函數(shù)的性質,根據(jù)頂點式求頂點坐標的方法是解題的關鍵,注意運用消元的思想解題.16、【分析】根據(jù)相似三角形的性質,即可求解.【詳解】∵,相似比為,∴與,的面積比等于4:1,∵的面積為,∴的面積為1.故答案是:1.【點睛】本題主要考查相似三角形的性質定理,掌握相似三角形的面積比等于相似比的平方,是解題的關鍵.17、4【解析】試題解析:∵可∴設DC=3x,BD=5x,又∵MN是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.18、+1.【詳解】解:∵五邊形ABCDE為正五邊形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==?πAB=,∴C陰影=++BC=+1.故答案為+1.三、解答題(共78分)19、(1)BCP,PCD,BCP,;(2)2;(3)作圖與求解過程見解析,2PA+PB的最小值為.【分析】(1)連結AD,過點A作AF⊥CB于點F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,當點A,P,D在同一條直線時,AP+AD最小,即可求解;(2)在AB上截取BF=2,連接PF,PC,AB=8,PB=1,BF=2,證明△ABP∽△PBF,當點F,點P,點C三點共線時,AP+PC的值最小,即可求解;(3)延長OC,使CF=1,連接BF,OP,PF,過點F作FB⊥OD于點M,確定,且∠AOP=∠AOP,△AOP∽△POF,當點F,點P,點B三點共線時,2AP+PB的值最小,即可求解.【詳解】解:(1)如圖1,連結AD,過點A作AF⊥CB于點F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,當點A,P,D在同一條直線時,AP+AD最小,即:AP+BP最小值為AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值為;故答案為:;(2)如圖2,在AB上截取BF=2,連接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴當點F,點P,點C三點共線時,AP+PC的值最小,∴CF=,∴AP+PC的值最小值為2,故答案為:2;(3)如圖3,延長OC,使CF=1,連接BF,OP,PF,過點F作FB⊥OD于點M,∵OC=1,F(xiàn)C=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴當點F,點P,點B三點共線時,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,F(xiàn)M⊥OM∴OM=1,F(xiàn)M=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值為.【點睛】本題主要考查了圓的有關知識,勾股定理,相似三角形的判定和性質,解本題的關鍵是根據(jù)材料中的思路構造出相似三角形..20、DC=6;AB=,【分析】如圖,作EH⊥AC于H.解直角三角形分別求出DE,EB,BC,CD,再利用相似三角形的性質求出AE即可解決問題.【詳解】如圖,作EH⊥AC于H.∵DE⊥BD,∴∠BDE=90°,∵tan∠ABD==,BD=10,∴DE=5,BE===5,∵∠C=90°,cos∠DBC==,∴BC=8,CD===6,∵EH∥BC,∴△AEH∽△ABC,∴=,∴=,∴AE=,∴AB=AE+BE=+5=.【點睛】本題考查解直角三角形的應用,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識21、(1)4;(2)BC=30cm【分析】(1)作BK⊥AF于點H,交MN于點K,通過△ABH∽△ACG,根據(jù)相似三角形的性質可得關于x的方程,求解即可;(2)在Rt△ACG中利用正弦值解線段AC長,即可得.【詳解】(1)解:作BK⊥AF于點H,交MN于點K,則BH∥CG,△ABH∽△ACG,設圓形滾輪的半徑AD長為xcm,∴即解得,x=4∴⊙A的半徑是4cm.(2)在Rt△ACG中,CG=76-4=72cm,則sin∠CAF=∴AC=cm,∴BC=AC-AB=80-50=30cm.【點睛】本題考查相似三角形的判定與性質,銳角三角函數(shù),構建相似三角形及建立模型是解答此題的關鍵.22、(1);(2);(3).【分析】(1)將兩點坐標直接代入可求出b,c的值,進而求出拋物線解析式為,得出C的坐標,從而求出直線AC的解析式為y=x+3.(2)設直線的解析式為,直線與拋物線只有一個公共點,方程有兩個相等的實數(shù)根,再利用根的判別式即可求出b的值.(3)拋物線的頂點坐標為(-1,4),關于y軸的對稱點為M(1,4),可確定M在直線AC上,分直線不在直線下方和直線在直線下方兩種情況分析即可得解.【詳解】解:將A,B坐標代入解析式得出b=-2,c=3,∴拋物線的解析式為:當x=0時,y=3,C的坐標為(0,3),根據(jù)A,C坐標可求出直線AC的解析式為y=x+3.直線,設直線的解析式為.直線與拋物線只有一個公共點,方程有兩個相等的實數(shù)根,,解得.直線的解析式為..解析:如圖所示,,拋物線的頂點坐標為.拋物線的頂點關于軸的對稱點為.當時,,點在直線上.①當直線不在直線下方時,直線能與拋物線在第二象限的部分形成封閉圖形.當時,.當直線與直線重合,即動點落在直線上時,點的坐標為.隨著點沿拋物線對稱軸向上運動,圖形逐漸變小,直至直線與軸平行時,圖形消失,此時點與拋物線的頂點重合,動點的坐標是,②當直線在直線下方時,直線不能與拋物線的任何部分形成封閉圖形.綜上,點的縱坐標的取值范圍是.【點睛】本題是一道二次函數(shù)與一次函數(shù)相結合的綜合性題目,根據(jù)點坐標求出拋物線與直線的解析式是解題的關鍵.考查了學生對數(shù)據(jù)的綜合分析能力,數(shù)形結合的能力,是一道很好的題目.23、【分析】過點A作于D,根據(jù)等腰三角形的三線合一性質求出根據(jù)勾股定理求出,最后用正弦的定義即可.【詳解】解:過點A作于D,又∵△ABC中,AB=AC=10,BC=6,∴,.∴.【點睛】本題考查了等腰三角形的三線合一性質、勾股定理、銳角三角函數(shù)的定義,構造直角三角形是解題的關鍵.24、;1.【分析】首先對括號內的分式進行通分,然后把除法轉化為乘法即可化簡,最后整體代值計算.【詳解】解:,,,,;∵是方程的一個根,∴,∴,∴,∴原式=【點睛】本題考查了分式的化簡求值和一元二次方程的根,熟知整體代入是解答此題關鍵.25、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值為.【分析】(1)C1、C2:y=ax2+bx開口大小相同、方向相反,則a=-1,將點A的坐標代入C2的表達式,即可求解;
(2)點A關于C2對稱軸的對稱點是點O(0,0),連接OC交函數(shù)C2的對稱軸與點P,此時PA+PC的值最小,即可求解;
(3)S△MOC=MH×xC=(-x2+4x-x)=-x2+x,即可求解.【詳解】(1)令:y=x2﹣2x=0,則x=0或2,即點B(2,0),∵C1、C2:y=ax2+bx開口大小相同、方向相反,則a=﹣1,則點A(4,0),將點A的坐標代入C2的表達式得:0=﹣16+4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務合同范本-工程合同模板
- 品牌策劃合作協(xié)議-合同范本
- 合伙協(xié)議書范文
- 2024房屋租賃居間合同
- 2024運輸合同物流運輸合同糾紛案例
- 2024設立有限責公司出資協(xié)議模板
- 2024年冷庫轉讓協(xié)議合同書
- 深圳發(fā)展銀行委托貸款操作流程
- 2024年學校食堂用工合同協(xié)議書樣本
- 北京借款合同的范本2024年
- 大宇迷你破壁機說明書
- 金屬非金屬礦山礦山法律法規(guī)
- 王慧文清華大學《互聯(lián)網產品管理課》
- 圓的周長計算練習公開課一等獎市賽課一等獎課件
- QC提高市政閉水試驗質量合格率
- 人教版九年級化學教案(全冊)
- TD-T 1041-2013 土地整治工程質量檢驗與評定規(guī)程
- 基恩士FS-N18N放大器常用調試說明書
- 保潔人員排班表
- 2023年安徽省交通控股集團招聘筆試題庫及答案解析
- LY/T 1956-2011縣級林地保護利用規(guī)劃編制技術規(guī)程
評論
0/150
提交評論