2022年四川省大竹縣數(shù)學(xué)九上期末監(jiān)測試題含解析_第1頁
2022年四川省大竹縣數(shù)學(xué)九上期末監(jiān)測試題含解析_第2頁
2022年四川省大竹縣數(shù)學(xué)九上期末監(jiān)測試題含解析_第3頁
2022年四川省大竹縣數(shù)學(xué)九上期末監(jiān)測試題含解析_第4頁
2022年四川省大竹縣數(shù)學(xué)九上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列事件是必然事件的是()A.若是的黃金分割點,則B.若有意義,則C.若,則D.拋擲一枚骰子,奇數(shù)點向上的概率是2.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.3.已知反比例函數(shù)的圖象經(jīng)過點(2,-2),則k的值為A.4 B. C.-4 D.-24.若整數(shù)使關(guān)于的不等式組至少有4個整數(shù)解,且使關(guān)于的分式方程有整數(shù)解,那么所有滿足條件的的和是()A. B. C. D.5.下列事件屬于必然事件的是()A.在一個裝著白球和黑球的袋中摸球,摸出紅球B.拋擲一枚硬幣2次都是正面朝上C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,是次品6.為了讓市民游客歡度“五一”,泉州市各地推出了許多文化旅游活動和景區(qū)優(yōu)惠,旅游人氣持續(xù)興旺.從市文旅局獲悉,“五一”假日全市累計接待國內(nèi)外游客171.18萬人次,171.18萬這個數(shù)用科學(xué)記數(shù)法應(yīng)表示為()A.1.7118×10 B.0.17118×10C.1.7118×10 D.171.18×107.使得關(guān)于的不等式組有解,且使分式方程有非負整數(shù)解的所有的整數(shù)的和是()A.-8 B.-10 C.-16 D.-188.如圖,圓錐的底面半徑OB=6cm,高OC=8cm.則這個圓錐的側(cè)面積是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm29.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④10.如圖所示的幾何體的左視圖是()A. B.C. D.11.,,,π四個實數(shù),任取一個數(shù)是無理數(shù)的概率為()A. B. C. D.112.如圖,拋物線交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個結(jié)論:①點C的坐標為(0,m);②當(dāng)m=0時,△ABD是等腰直角三角形;③若a=-1,則b=4;④拋物線上有兩點P(,)和Q(,),若<1<,且+>2,則>.其中結(jié)論正確的序號是()A.①② B.①②③ C.①②④ D.②③④二、填空題(每題4分,共24分)13.如圖,正方形和正方形的邊長分別為3和1,點、分別在邊、上,為的中點,連接,則的長為_________.14.拋物線與軸交點坐標為______.15.如圖,E是矩形ABCD的對角線的交點,點F在邊AE上,且DF=DC,若∠ADF=25°,則∠BEC=________.16.函數(shù)中,自變量的取值范圍是________.17.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)你抬頭看信號燈時,是綠燈的概率為____.18.如圖,在中,,點為的中點.將繞點逆時針旋轉(zhuǎn)得到,其中點的運動路徑為,則圖中陰影部分的面積為______.三、解答題(共78分)19.(8分)如圖,線段AB,A(2,3),B(5,3),拋物線y=﹣(x﹣1)2﹣m2+2m+1與x軸的兩個交點分別為C,D(點C在點D的左側(cè))(1)求m為何值時拋物線過原點,并求出此時拋物線的解析式及對稱軸和項點坐標.(2)設(shè)拋物線的頂點為P,m為何值時△PCD的面積最大,最大面積是多少.(3)將線段AB沿y軸向下平移n個單位,求當(dāng)m與n有怎樣的關(guān)系時,拋物線能把線段AB分成1:2兩部分.20.(8分)一個箱子里有4瓶牛奶,其中有一瓶是過期的,且這4瓶牛奶的外包裝完全相同.(1)現(xiàn)從這4瓶牛奶中隨機拿1瓶,求恰好拿到過期牛奶的概率;(2)現(xiàn)從這4瓶牛奶中不放回地隨機拿2瓶,求拿到的2瓶牛奶中恰好有過期牛奶的概率.21.(8分)如圖,已知AB經(jīng)過圓心O,交⊙O于點C.(1)尺規(guī)作圖:在AB上方的圓弧上找一點D,使得△ABD是以AB為底邊的等腰三角形(保留作圖痕跡);(2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.22.(10分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為擴大銷售,增加盈利,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.(1)每件襯衫降價多少元時,商場平均每天的盈利是1050元?(2)每件襯衫降價多少元時,商場平均每天盈利最大?最大盈利是多少?23.(10分)如圖,在矩形中對角線、相交于點,延長到點,使得四邊形是一個平行四邊形,平行四邊形對角線交、分別為點和點.(1)證明:;(2)若,,則線段的長度.24.(10分)小明代表學(xué)校參加“我和我的祖國”主題宣傳教育活動,該活動分為兩個階段,第一階段有“歌曲演唱”、“書法展示”、“器樂獨奏”3個項目(依次用、、表示),第二階段有“故事演講”、“詩歌朗誦”2個項目(依次用、表示),參加人員在每個階段各隨機抽取一個項目完成.(1)用畫樹狀圖或列表的方法,列出小明參加項目的所有等可能的結(jié)果;(2)求小明恰好抽中、兩個項目的概率.25.(12分)已知拋物線y=x2﹣2ax+m.(1)當(dāng)a=2,m=﹣5時,求拋物線的最值;(2)當(dāng)a=2時,若該拋物線與坐標軸有兩個交點,把它沿y軸向上平移k個單位長度后,得到新的拋物線與x軸沒有交點,請判斷k的取值情況,并說明理由;(3)當(dāng)m=0時,平行于y軸的直線l分別與直線y=x﹣(a﹣1)和該拋物線交于P,Q兩點.若平移直線l,可以使點P,Q都在x軸的下方,求a的取值范圍.26.畫出如圖所示幾何體的三視圖

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)必然事件是肯定會發(fā)生的事件,對每個選項進行判斷,即可得到答案.【詳解】解:A、若是的黃金分割點,則;則A為不可能事件;B、若有意義,則;則B為隨機事件;C、若,則,則C為不可能事件;D、拋擲一枚骰子,奇數(shù)點向上的概率是;則D為必然事件;故選:D.【點睛】本題考查了必然事件的定義,解題的關(guān)鍵是熟練掌握定義.2、D【解析】由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關(guān)鍵.3、C【解析】∵反比例函數(shù)的圖象經(jīng)過點(2,-2),∴.故選C.4、A【分析】根據(jù)不等式組求出a的范圍,然后再根據(jù)分式方程求出a的取值范圍,綜合考慮確定a的值,再求和即可.【詳解】解不等式組得:∵至少有4個整數(shù)解∴,解得分式方程去分母得解得:∵分式方程有整數(shù)解,a為整數(shù)∴、、、∴、、、、、、、∵,∴又∵∴或滿足條件的的和是-13,故選A.【點睛】本題考查了不等式組與分式方程,解題的關(guān)鍵是解分式方程時需要舍去增根的情況.5、C【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,據(jù)此逐一判斷即可.【詳解】A.在一個裝著白球和黑球的袋中摸球,摸出紅球,一定不會發(fā)生,是不可能事件,不符合題意,B.拋擲一枚硬幣2次都是正面朝上,可能朝上,也可能朝下,是隨機事件,不符合題意,C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水,是必然事件,符合題意.D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,可能是正品,也可能是次品,是隨機事件,不符合題意,故選:C.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、C【分析】用科學(xué)記數(shù)法表示較大數(shù)的形式是,其中,n為正整數(shù),只要確定a,n即可.【詳解】將171.18萬用科學(xué)記數(shù)法表示為:1.7118×1.故選:C.【點睛】本題主要考查科學(xué)記數(shù)法,掌握科學(xué)記數(shù)法是解題的關(guān)鍵.7、D【分析】根據(jù)不等式組的解集的情況,得出關(guān)于m的不等式,求得m的取值范圍,再解分式方程得出x,根據(jù)x是非負整數(shù),得出m所有值的和.【詳解】解:∵關(guān)于的不等式組有解,則,∴,又∵分式方程有非負整數(shù)解,∴為非負整數(shù),∵,∴-10,-6,-2由,故答案選D.【點睛】本題考查含參數(shù)的不等式組及含參數(shù)的分式方程,能夠準確解出不等式組及方程是解題的關(guān)鍵.8、C【詳解】解:由勾股定理計算出圓錐的母線長=,圓錐漏斗的側(cè)面積=.故選C.考點:圓錐的計算9、B【解析】由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.10、A【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看共一列,第一層是一個小正方形,第二層是一個小正方形,故選:A.【點睛】本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.11、B【分析】先求出無理數(shù)的個數(shù),再根據(jù)概率公式即可得出結(jié)論;【詳解】∵共有4種結(jié)果,其中無理數(shù)有:,π共2種情況,∴任取一個數(shù)是無理數(shù)的概率;故選B.【點睛】本題主要考查了概率公式,無理數(shù),掌握概率公式,無理數(shù)是解題的關(guān)鍵.12、C【分析】根據(jù)二次函數(shù)圖像的基本性質(zhì)依次進行判斷即可.【詳解】①當(dāng)x=0時,y=m,∴點C的坐標為(0,m),該項正確;②當(dāng)m=0時,原函數(shù)解析式為:,此時對稱軸為:,且A點交于原點,∴B點坐標為:(2,0),即AB=2,∴D點坐標為:(1,1),根據(jù)勾股定理可得:BD=AD=,∴△ABD為等腰三角形,∵,∴△ABD為等腰直角三角形,該項正確;③由解析式得其對稱軸為:,利用其圖像對稱性,∴當(dāng)若a=-1,則b=3,該項錯誤;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q點離對稱軸較遠,∴>,該項正確;綜上所述,①②④正確,③錯誤,故選:C.【點睛】本題主要考查了二次函數(shù)圖像解析式與其函數(shù)圖像的性質(zhì)綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】延長GE交AB于點O,作PH⊥OE于點H,則PH是△OAE的中位線,求得PH的長和HG的長,在Rt△PGH中利用勾股定理求解.【詳解】解:延長GE交AB于點O,作PH⊥OE于點H.

則PH∥AB.

∵P是AE的中點,

∴PH是△AOE的中位線,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【點睛】本題考查了正方形的性質(zhì)、勾股定理和三角形的中位線定理,正確作出輔助線構(gòu)造直角三角形是關(guān)鍵.14、【分析】令x=0,求出y的值即可.【詳解】解:∵當(dāng)x=0,則y=-1+3=2,∴拋物線與y軸的交點坐標為(0,2).【點睛】本題考查的是二次函數(shù)的性質(zhì),熟知y軸上點的特點,即y軸上的點的橫坐標為0是解答此題的關(guān)鍵.15、115°【解析】由∠ADF求出∠CDF,再由等腰三角形的性質(zhì)得出∠DFC,從而求出∠BCE,最后用等腰三角形的性質(zhì)即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE.∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°.∵DF=DC,∴∠DFC=∠DCA=(180°-∠CDF)÷2=(180°-65°)÷2=,∴∠BCE=∠BCD﹣∠DCA=90°﹣=.∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°.故答案為115°.【點睛】本題是矩形的性質(zhì),主要考查了矩形的性質(zhì),等腰三角形的性質(zhì)和判定,解答本題的關(guān)鍵是求出∠DFC.是一道中考常考的簡單題.16、【分析】根據(jù)分式有意義的條件是分母不為0;可得關(guān)系式x﹣1≠0,求解可得自變量x的取值范圍.【詳解】根據(jù)題意,有x﹣1≠0,解得:x≠1.故答案為:x≠1.【點睛】本題考查了分式有意義的條件.掌握分式有意義的條件是分母不等于0是解答本題的關(guān)鍵.17、【分析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【詳解】抬頭看信號燈時,是綠燈的概率為.故答案為.【點睛】此題主要考查了概率公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(1)隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.18、【分析】連接,設(shè)AC、DE交于點N,如圖,根據(jù)題意可得的度數(shù)和BM的長度,易證為的中位線,故MN可求,然后利用S陰影=S扇形MBE,代入相關(guān)數(shù)據(jù)求解即可.【詳解】解:連接,設(shè)AC、DE交于點N,如圖,由題意可知,,∴,∵,,且為的中點,∴為的中位線,∴,,∴S陰影=S扇形MBE.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形的中位線定理、扇形面積的計算等知識,屬于??碱}型,熟練掌握旋轉(zhuǎn)的性質(zhì)、將所求不規(guī)則圖形的面積轉(zhuǎn)化為規(guī)則圖形的面積的和差是解題的關(guān)鍵.三、解答題(共78分)19、(1)當(dāng)m=0或m=2時,拋物線過原點,此時拋物線的解析式是y=﹣(x﹣1)2+1,對稱軸為直線x=1,頂點為(1,1);(2)m為1時△PCD的面積最大,最大面積是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.【分析】(1)根據(jù)拋物線過原點和題目中的函數(shù)解析式可以求得m的值,并求出此時拋物線的解析式及對稱軸和項點坐標;(2)根據(jù)題目中的函數(shù)解析式和二次函數(shù)的性質(zhì),可以求得m為何值時△PCD的面積最大,求得點C、D的坐標,由此求出△PCD的面積最大值;(3)根據(jù)題意拋物線能把線段AB分成1:2,存在兩種情況,求出兩種情況下線段AB與拋物線的交點,即可得到當(dāng)m與n有怎樣的關(guān)系時,拋物線能把線段AB分成1:2兩部分.【詳解】(1)當(dāng)y=﹣(x﹣1)2﹣m2+2m+1過原點(0,0)時,0=﹣1﹣m2+2m+1,得m1=0,m2=2,當(dāng)m1=0時,y=﹣(x﹣1)2+1,當(dāng)m2=2時,y=﹣(x﹣1)2+1,由上可得,當(dāng)m=0或m=2時,拋物線過原點,此時拋物線的解析式是y=﹣(x﹣1)2+1,對稱軸為直線x=1,頂點為(1,1);(2)∵拋物線y=﹣(x﹣1)2﹣m2+2m+1,∴該拋物線的頂點P為(1,﹣m2+2m+1),當(dāng)﹣m2+2m+1最大時,△PCD的面積最大,∵﹣m2+2m+1=﹣(m﹣1)2+2,∴當(dāng)m=1時,﹣m2+2m+1最大為2,∴y=﹣(x﹣1)2+2,當(dāng)y=0時,0=﹣(x﹣1)2+2,得x1=1+,x2=1﹣,∴點C的坐標為(1﹣,0),點D的坐標為(1+,0)∴CD=(1+)﹣(1﹣)=2,∴S△PCD==2,即m為1時△PCD的面積最大,最大面積是2;(3)將線段AB沿y軸向下平移n個單位A(2,3﹣n),B(5,3﹣n)當(dāng)線段AB分成1:2兩部分,則點(3,3﹣n)或(4,3﹣n)在該拋物線解析式上,把(3,3﹣n)代入拋物線解析式得,3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+6;把(4,3﹣n)代入拋物線解析式,得3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+1;∴n=m2﹣2m+6或n=m2﹣2m+1.【點睛】此題是二次函數(shù)的綜合題,考查拋物線的對稱軸、頂點坐標,最大值的計算,(3)是題中的難點,由圖象向下平移得到點的坐標,再將點的坐標代入解析式,即可確定m與n的關(guān)系.20、(1);(2)【分析】(1)直接根據(jù)概率公式計算可得;(2)設(shè)這四瓶牛奶分別記為、、、,其中過期牛奶為,畫樹狀圖可得所有等可能結(jié)果,從所有等可能結(jié)果中找到抽出的2瓶牛奶中恰好抽到過期牛奶的結(jié)果數(shù),再根據(jù)概率公式計算可得【詳解】解:(1)任意抽取1瓶,抽到過期的一瓶的概率是,故答案為:;(2)設(shè)這四瓶牛奶分別記為、、、,其中過期牛奶為,畫樹狀圖如圖所示,由圖可知,共有12種等可能結(jié)果,抽出的2瓶牛奶中恰好抽到過期牛奶的有6種結(jié)果,抽出的2瓶牛奶中恰好抽到過期牛奶的概率為.【點睛】此題考查了列表法與樹狀圖法,以及概率公式,用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.21、(1)作圖見解析;(2)證明見解析.【分析】(1)作線段AB的垂直一部分線,交AB上方的圓弧上于點D,連接AD,BD,等腰三角形ABD即為所求作;(2)由等腰三角形的性質(zhì)可求出∠B=30゜,連接OD,利用三角形外角的性質(zhì)得∠DOB=60゜,再由三角形內(nèi)角和求得∠ODB=90゜,從而可證得結(jié)論.【詳解】(1)如圖所示;(2)∵△ABD是等腰三角形,且∠DAB=30°,∴∠DBA=30゜,連接OD,∵OA=OD∴∠ODA=∠OAD=30゜∴∠DOB=∠ODA+∠OAD=60゜在△ODB中,∠DOB+∠ODB+∠DBO=180゜∴∠ODB=180゜-∠DOB-∠DBO=90゜,即∴直線BD與⊙O相切.【點睛】本題考查的是切線的判定,掌握“連交點,證垂直”是解決這類問題的常用解題思路.22、(1)每件襯衫降價5元或25元時,商場平均每天的盈利是1050元.(2)每件襯衫降價15元時,商場平均每天的盈利最大,最大盈利是1250元.【分析】(1)設(shè)每件襯衫應(yīng)降價x元,則每天多銷售2x件,根據(jù)盈利=每件的利潤×數(shù)量建立方程求出其解即可;

(2)根據(jù)盈利=每件的利潤×數(shù)量表示出y與x的關(guān)系式,由二次函數(shù)的性質(zhì)及頂點坐標求出結(jié)論.【詳解】解:(1)設(shè)每件襯衫降價元根據(jù)題意,得整理,得解得答:每件襯衫降價5元或25元時,商場平均每天的盈利是1050元.(2)設(shè)商場每天的盈利為元.根據(jù)題意,得∵∴當(dāng)時,有最大值,最大值為1250.答:每件襯衫降價15元時,商場平均每天的盈利最大,最大盈利是1250元.【點睛】本題考查了列一元二次方程解實際問題的運用,一元二次方程的解法的運用,銷售問題的數(shù)量關(guān)系的運用,二次函數(shù)的運用,解答時求出函數(shù)的解析式是關(guān)鍵.23、(1)證明見解析;(2).【分析】(1)首先利用矩形和平行四邊形平行的性質(zhì)得出和,然后利用相似三角形對應(yīng)邊成比例,即可得證;(2)利用平行四邊形對角線的性質(zhì)以及勾股定理和相似三角形的性質(zhì)進行等量轉(zhuǎn)換,即可得解.【詳解】(1)證明:∵是矩形,且,∴.∴.又∵是平行四邊形,且AC∥DE∴,∴.∴.∴.(2)∵四邊形為平行四邊形,,相交點,∴∴在直角三角形中,∴又∵,∴.∴∴.【點睛】此題主要考查相似三角形的判定與性質(zhì)以及勾股定理的運用,熟練掌握,即可解題.24、(1)見解析;(2).【分析】(1)畫樹狀圖得出所有等可能結(jié)果;(2)從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】(1)畫樹狀圖如下:(2)由樹狀圖知共有6種等可能結(jié)果,其中小明恰好抽中B、D兩個項目的只有1種情況,

所以小明恰好抽中B、D兩個項目的概率為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論