版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一元二次方程的解為()A. B., C., D.,2.在中,點在線段上,請?zhí)砑右粋€條件使,則下列條件中一定正確的是()A. B.C. D.3.表給出了二次函數(shù)y=ax2+bx+c(a≠0)的自變量x與函數(shù)值y的部分對應值:那么方程ax2+bx+c=0的一個根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.384.下列二次函數(shù)的開口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-55.如圖,⊙O是△ABC的外接圓,已知AD平分∠BAC交⊙O于點D,AD=5,BD=2,則DE的長為()A. B. C. D.6.下列函數(shù)中,是反比例函數(shù)的是()A. B. C. D.7.如圖是一個正八邊形,向其內(nèi)部投一枚飛鏢,投中陰影部分的概率是()A. B. C. D.8.如果反比例函數(shù)y=kx的圖像經(jīng)過點(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限9.如圖,直線y=2x與雙曲線在第一象限的交點為A,過點A作AB⊥x軸于B,將△ABO繞點O旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標為()A.(1.0) B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2) D.(﹣2.1)或(2,﹣1)10.下列物體的光線所形成的投影是平行投影的是()A.臺燈 B.手電筒 C.太陽 D.路燈11.順次連接四邊形ABCD各邊的中點,所得四邊形是()A.平行四邊形B.對角線互相垂直的四邊形C.矩形D.菱形12.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,則AC=()A.3sin40°B.3sin50°二、填空題(每題4分,共24分)13.在平面直角坐標系中,點(4,-5)關(guān)于原點的對稱點的坐標是________.14.如圖,點是函數(shù)圖象上的一點,連接,交函數(shù)的圖象于點,點是軸上的一點,且,則的面積為_________.15.將邊長分別為,,的三個正方形按如圖所示的方式排列,則圖中陰影部分的面積為______.16.=___17.如圖,已知AD∥BC,AC和BD相交于點O,若△AOD的面積為2,△BOC的面積為18,BC=6,則AD的長為_____.18.若一個圓錐的側(cè)面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的底面半徑為__________cm.三、解答題(共78分)19.(8分)如圖,點C在以AB為直徑的圓上,D在線段AB的延長線上,且CA=CD,BC=BD.(1)求證:CD與⊙O相切;(2)若AB=8,求圖中陰影部分的面積.20.(8分)已知關(guān)于x的一元二次方程有兩個實數(shù)根x1,x1.(1)求實數(shù)k的取值范圍;(1)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.21.(8分)已知二次函數(shù)的圖象經(jīng)過點.(1)當時,若點在該二次函數(shù)的圖象上,求該二次函數(shù)的表達式;(2)已知點,在該二次函數(shù)的圖象上,求的取值范圍;(3)當時,若該二次函數(shù)的圖象與直線交于點,,且,求的值.22.(10分)如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,(1)證明:△ABD≌△BCE;(2)證明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的長.23.(10分)如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O(shè)為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)24.(10分)如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.(1)求證:ΔADM∽ΔBMN;(2)求∠DMN的度數(shù).25.(12分)已知關(guān)于x的方程x2+(2m+1)x+m(m+1)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)已知方程的一個根為x=1,求代數(shù)式m2+m﹣5的值.26.如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,(1)求拋物線的解析式;(2)設(shè)點P的橫坐標為m,當線段PE的長取最大值時,解答以下問題.①求此時m的值.②設(shè)Q是平面直角坐標系內(nèi)一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】通過因式分解法解一元二次方程即可得出答案.【詳解】∴或∴,故選C【點睛】本題主要考查解一元二次方程,掌握因式分解法是解題的關(guān)鍵.2、B【分析】根據(jù)相似三角形的判定方法進行判斷,要注意相似三角形的對應邊和對應角.【詳解】解:如圖,在中,∠B的夾邊為AB和BC,在中,∠B的夾邊為AB和BD,∴若要,則,即故選B.【點睛】此題主要考查的是相似三角形的判定,正確地判斷出相似三角形的對應邊和對應角是解答此題的關(guān)鍵.3、B【分析】觀察表中數(shù)據(jù)得到拋物線y=ax2+bx+c與x軸的一個交點在(1.1,0)和點(1.2,0)之間,更靠近點(1.2,0),然后根據(jù)拋物線與x軸的交點問題可得到方程ax2+bx+c=0一個根的近似值.【詳解】∵x=1.1時,y=ax2+bx+c=﹣0.49;x=1.2時,y=ax2+bx+c=0.04;∴拋物線y=ax2+bx+c與x軸的一個交點在(1.1,0)和點(1.2,0)之間,更靠近點(1.2,0),∴方程ax2+bx+c=0有一個根約為1.1.故選:B.【點睛】本題主要考查拋物線與x軸的交點問題,掌握二次函數(shù)的圖象與x軸的交點的橫坐標與一元二次方程的根的關(guān)系,是解題的關(guān)鍵.4、C【解析】根據(jù)二次函數(shù)圖象的開口方向與二次項系數(shù)的關(guān)系逐一判斷即可.【詳解】解:A.y=-3x2-1中,﹣3<0,二次函數(shù)圖象的開口向下,故A不符合題意;B.y=-x2+1中,-<0,二次函數(shù)圖象的開口向下,故B不符合題意;C.y=x2+3中,>0,二次函數(shù)圖象的開口向上,故C符合題意;D.y=-x2-5中,-1<0,二次函數(shù)圖象的開口向下,故D不符合題意;故選:C.【點睛】此題考查的是判斷二次函數(shù)圖像的開口方向,掌握二次函數(shù)圖象的開口方向與二次項系數(shù)的關(guān)系是解決此題的關(guān)鍵.5、D【分析】根據(jù)AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所對的圓周角相等,求證△ABD△BED,利用其對應邊成比例可得,然后將已知數(shù)值代入即可求出DE的長.【詳解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所對的圓周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故選D.【點睛】本題考查圓周角定理以及相似三角形的判定與性質(zhì),根據(jù)其定理進行分析.6、B【解析】根據(jù)反比例函數(shù)的一般形式即可判斷.【詳解】A、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;B、是一次函數(shù),正確;C、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤;D、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項錯誤.故選:B.【點睛】本題考查了反比例函數(shù)的定義,重點是將一般式y(tǒng)=(k≠0)轉(zhuǎn)化為y=kx?1(k≠0)的形式.7、B【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.根據(jù)正八邊形性質(zhì)求出陰影部分面積占總面積之比,進而可得到答案【詳解】解:由正八邊形性質(zhì)可知∠EFB=∠FED=135°,故可作出正方形.則是等腰直角三角形,設(shè),則,,正八邊形的邊長是.則正方形的邊長是.則正八邊形的面積是:,陰影部分的面積是:.飛鏢落在陰影部分的概率是,故選:.【點睛】本題考查了幾何概率的求法:一般用陰影區(qū)域表示所求事件(A);首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來;然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.同時也考查了正多邊形的計算,根據(jù)正八邊形性質(zhì)構(gòu)造正方形求面積比是關(guān)鍵.8、B【解析】根據(jù)反比例函數(shù)圖象上點的坐標特點可得k=12,再根據(jù)反比例函數(shù)的性質(zhì)可得函數(shù)圖象位于第一、三象限.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(-3,-4∴k=-3×(-4)=12,∵12>0,∴該函數(shù)圖象位于第一、三象限,故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),關(guān)鍵是根據(jù)反比例函數(shù)圖象上點的坐標特點求出k的值.9、D【解析】試題分析:聯(lián)立直線與反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A(1,2),即AB=2,OB=1,根據(jù)題意畫出相應的圖形,如圖所示,分順時針和逆時針旋轉(zhuǎn)兩種情況:根據(jù)旋轉(zhuǎn)的性質(zhì),可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根據(jù)圖形得:點A′的坐標為(﹣2,1)或(2,﹣1).故選D.10、C【解析】太陽相對地球較遠且大,其發(fā)出的光線可認為是平行光線.【詳解】臺燈、手電筒、路燈發(fā)出的光線是由點光源發(fā)出的光線,所形成的投影是中心投影;太陽相對地球較遠且大,其發(fā)出的光線可認為是平行光線.故選C【點睛】本題主要考查了中心投影、平行投影的概念.11、A【解析】試題分析:連接原四邊形的一條對角線,根據(jù)中位線定理,可得新四邊形的一組對邊平行且等于對角線的一半,即一組對邊平行且相等.則新四邊形是平行四邊形.解:如圖,根據(jù)中位線定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四邊形EFGH是平行四邊形.故選A.考點:中點四邊形.12、D【解析】試題分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故選D.考點:1.直角三角形兩銳角的關(guān)系;2.銳角三角函數(shù)定義.二、填空題(每題4分,共24分)13、(-4,5)【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反可得答案.【詳解】解:點(4,-5)關(guān)于原點的對稱點的坐標是(-4,5),故答案為:(-4,5).【點睛】此題主要考查了關(guān)于原點對稱的點的坐標特點,關(guān)鍵是掌握點的坐標的變化規(guī)律.14、4【分析】作AE⊥x軸于點E,BD⊥x軸于點D得出△OBD∽△OAE,根據(jù)面積比等于相似比的平方結(jié)合反比例函數(shù)的幾何意義求出,再利用條件“AO=AC”得出,進而分別求出和相減即可得出答案.【詳解】作AE⊥x軸于點E,BD⊥x軸于點D∴△OBD∽△OAE∴根據(jù)反比例函數(shù)的幾何意義可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案為4.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較大,需要熟練掌握反比例函數(shù)的幾何意義.15、【分析】首先對圖中各點進行標注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質(zhì)求出BK、EN的長從而求出梯形的面積即可得出答案.【詳解】解:如圖所示,∵四邊形MEGH為正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面積:∴陰影部分的面積:故答案為:.【點睛】本題主要考查的知識點是圖形面積的計算以及相似三角形判定及其性質(zhì),根據(jù)相似的性質(zhì)求出相應的邊長是解答本題的關(guān)鍵.16、【分析】原式利用特殊角的三角函數(shù)值計算即可得到結(jié)果.【詳解】解:原式==.故答案為:.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.17、1【分析】根據(jù)AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面積之比可求出相似比,再根據(jù)相似比即可求出AD的長度.【詳解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面積為1,△BOC的面積為18,∴△AOD與△BOC的面積之比為1:9,∴,∵BC=6,∴AD=1.故答案為:1.【點睛】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.18、1【分析】(1)根據(jù),求出扇形弧長,即圓錐底面周長;(2)根據(jù),即,求圓錐底面半徑.【詳解】該圓錐的底面半徑=故答案為:1.【點睛】圓錐的側(cè)面展開圖是扇形,解題關(guān)鍵是理解扇形弧長就是圓錐底面周長.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接OC,由圓周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性質(zhì)得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,證出∠DCO=90°,則CD⊥OC,即可得出結(jié)論;
(2)證明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性質(zhì)得出CD=OC=4,圖中陰影部分的面積=△OCD的面積-扇形OBC的面積,代入數(shù)據(jù)計算即可.【詳解】證明:連接OC,如圖所示:
∵AB是⊙O的直徑,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵CA=CD,BC=BD,
∴∠A=∠D=∠BCD,
又∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCD,
∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,
∴CD⊥OC,
∵OC是⊙O的半徑,
∴CD與⊙O相切;
(2)解:∵AB=8,
∴OC=OB=4,
由(1)得:∠A=∠D=∠BCD,
∴∠OBC=∠BCD+∠D=2∠D,
∵∠BOC=2∠A,
∴∠BOC=∠OBC,
∴OC=BC,
∵OB=OC,
∴OB=OC=BC,
∴∠BOC=60°,
∵∠OCD=90°,
∴∠D=90°-60°=30°,
∴CD=OC=4,
∴圖中陰影部分的面積=△OCD的面積-扇形OBC的面積=×4×4-=8-π.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、含30°角的直角三角形的性質(zhì)、扇形面積公式、三角形面積公式等知識;熟練掌握切線的判定和圓周角定理是解題的關(guān)鍵.20、(1)(1)不存在【分析】(1)由題意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通過解該不等式即可求得k的取值范圍;(1)假設(shè)存在實數(shù)k使得x1·x1-x11-x11≥0成立.由根與系數(shù)的關(guān)系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0轉(zhuǎn)化為3x1·x1-(x1+x1)1≥0的形式,通過解不等式可以求得k的值.【詳解】(1)∵原方程有兩個實數(shù)根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴當k≤時,原方程有兩個實數(shù)根;(1)假設(shè)存在實數(shù)k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的兩根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有當k=1時,上式才能成立;又∵由(1)知k≤,∴不存在實數(shù)k使得x1·x1-x11-x11≥0成立.21、(1);(2);(3)或2.【分析】(1)將和點,代入解析式中,即可求出該二次函數(shù)的表達式;(2)根據(jù)點M和點N的坐標即可求出該拋物線的對稱軸,再根據(jù)二次函數(shù)的開口方向和二次函數(shù)的增加性,即可列出關(guān)于t的不等式,從而求出的取值范圍;(3)將和點代入解析式中,可得,然后將二次函數(shù)的解析式和一次函數(shù)的解析式聯(lián)立,即可求出點P、Q的坐標,最后利用平面直角坐標系中任意兩點之間的距離公式即可求出的值.【詳解】解:(1)∵,∴二次函數(shù)的表達式為.∵點,在二次函數(shù)的圖象上,∴.解得.∴該拋物線的函數(shù)表達式為.(2)∵點,在該二次函數(shù)的圖象上,∴該二次函數(shù)的對稱軸是直線.∵拋物線開口向上,,,在該二次函數(shù)圖象上,且,∴點,分別落在點的左側(cè)和右側(cè),∴.解得的取值范圍是.(3)當時,的圖象經(jīng)過點,∴,即.∴二次函數(shù)表達式為.根據(jù)二次函數(shù)的圖象與直線交于點,由,解得,.∴點的橫坐標分別是1,.不妨設(shè)點的橫坐標是1,則點與點重合,即的坐標是,如下圖所示∴點的坐標是,即的坐標是.∵,∴根據(jù)平面直角坐標系中任意兩點之間的距離公式,可得.解得或2.【點睛】此題考查的是二次函數(shù)與一次函數(shù)的綜合大題,掌握用待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的增減性、求二次函數(shù)與一次函數(shù)的交點坐標和平面直角坐標系中任意兩點之間的距離公式是解決此題的關(guān)鍵.22、(1)證明見解析;(2)證明見解析;(3)BD=2.【分析】(1)根據(jù)等邊三角形的性質(zhì),利用SAS證得△ABD≌△BCE;
(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可證∠ABE=∠EAF,又∠AEF=∠BEA,由此可以證明△AEF∽△BEA;
(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以證明△BDF∽△ADB,然后可以得到,即BD2=AD?DF=(AF+DF)?DF.【詳解】解:(1)∵△ABC是等邊三角形,∴AB=BC,∠ABD=∠BCE,在△ABD與△BCE中∵,∴△ABD≌△BCE(SAS);(2)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD?DF=(AF+DF)?DF=8,∴BD=2.【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),全等三角形的判定,等邊三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì),全等三角形的判定,等邊三角形的性質(zhì).23、11.3m.【分析】連接OC,求出OC和OE,根據(jù)勾股定理求出CE,根據(jù)垂徑定理求出CD即可.【詳解】連接OC,求出OC和OE,根據(jù)勾股定理求出CE,根據(jù)垂徑定理求出CD即可.【解答】解:如圖,連接OC,AB交CD于E,由題意知:AB=1.6+6.4+4=12,所以O(shè)C=OB=6,OE=OB﹣BE=6﹣4=2,由題意可知:AB⊥CD,∵AB過O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE=,∴CD=2CE=8≈11.3m,所以路面CD的寬度為11.3m.【點睛】本題考查了垂徑定理和勾股定理,能求出CE的長是解此題的關(guān)鍵,注意:垂直于弦的直徑平分這條弦.24、(1)見解析;(2)90°【分析】(1)根據(jù),,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,從而得出∠DMN的度數(shù).【詳解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【點睛】本題考查了正方形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,解答時證明△ADM∽△BMN是解答的關(guān)鍵.25、(1)方程總有兩個不相等的實數(shù)根;(2)-2.【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年出差免責合同格式3篇
- 2024年度展會現(xiàn)場保潔與后勤服務(wù)合同3篇
- 2024年度新能源行業(yè)信用擔保服務(wù)合同3篇
- 2024年度拼多多農(nóng)產(chǎn)品供應鏈合同2篇
- 2024年度居間房屋租賃中介服務(wù)合同范本2篇
- 2024年度跨境貿(mào)易授信合同擔保與風險防范協(xié)議3篇
- 2024年度影視劇本改編與電影周邊產(chǎn)品開發(fā)委托合同3篇
- 2024版分包商勞務(wù)派遣合同3篇
- 2024年度休閑漁業(yè)水庫水面承包經(jīng)營合同3篇
- 2024年度消防安全檢測與評估合同9篇
- 職業(yè)素質(zhì)養(yǎng)成(吉林交通職業(yè)技術(shù)學院)智慧樹知到答案2024年吉林交通職業(yè)技術(shù)學院
- 《紅樓夢》第5課時:欣賞小說人物創(chuàng)作的詩詞(教學教學設(shè)計)高一語文同步備課系列(統(tǒng)編版必修下冊)
- 【新教材】蘇科版(2024)七年級上冊數(shù)學第1-6章全冊教案設(shè)計
- 天津2024年天津市應急管理局招聘應急管理綜合行政執(zhí)法專職技術(shù)檢查員筆試歷年典型考題及考點附答案解析
- 工業(yè)物聯(lián)網(wǎng)(IIoT)行業(yè)發(fā)展全景調(diào)研與投資趨勢預測研究報告
- 佛山市、三水區(qū)2022-2023學年七年級上學期期末地理試題【帶答案】
- 財政投資評審咨詢服務(wù)預算和結(jié)算評審項目投標方案(技術(shù)標)
- 理工英語3-01-國開機考參考資料
- 綿綿用力久久為功-堅持每天進步一點點初中期末動員班會-2023-2024學年初中主題班會課件
- 2024屆湖北高三元月調(diào)考數(shù)學試卷含答案
- 視頻會議系統(tǒng)保障方案
評論
0/150
提交評論