黑龍江省哈爾濱市光華中學2022-2023學年數(shù)學九年級第一學期期末預測試題含解析_第1頁
黑龍江省哈爾濱市光華中學2022-2023學年數(shù)學九年級第一學期期末預測試題含解析_第2頁
黑龍江省哈爾濱市光華中學2022-2023學年數(shù)學九年級第一學期期末預測試題含解析_第3頁
黑龍江省哈爾濱市光華中學2022-2023學年數(shù)學九年級第一學期期末預測試題含解析_第4頁
黑龍江省哈爾濱市光華中學2022-2023學年數(shù)學九年級第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,為外一點,分別切于點切于點且分別交于點,若,則的周長為()A. B. C. D.2.如圖所示,在平面直角坐標系中,有兩點A(4,2),B(3,0),以原點為位似中心,A'B'與AB的相似比為,得到線段A'B'.正確的畫法是()A. B. C. D.3.如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為()A.40° B.50° C.65° D.75°4.已知關于的一元二次方程的一個根是2,則的值為()A.-1 B.1 C.-2 D.25.小明利用計算機列出表格對一元二次方程進行估根如表:那么方程的一個近似根是()A. B. C. D.6.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣367.函數(shù)(k為常數(shù))的圖像上有三個點(-2,y1),(-1,y2),(,y3),函數(shù)值y1,y2,y3的大小為()A. B.C. D.8.已知三地順次在同-直線上,甲、乙兩人均騎車從地出發(fā),向地勻速行駛.甲比乙早出發(fā)分鐘;甲到達地并休息了分鐘后,乙追上了甲.甲、乙同時從地以各自原速繼續(xù)向地行駛.當乙到達地后,乙立即掉頭并提速為原速的倍按原路返回地,而甲也立即提速為原速的二倍繼續(xù)向地行駛,到達地就停止.若甲、乙間的距離(米)與甲出發(fā)的時間(分)之間的函數(shù)關系如圖所示,則下列說法錯誤的是()A.甲、乙提速前的速度分別為米/分、米/分.B.兩地相距米C.甲從地到地共用時分鐘D.當甲到達地時,乙距地米9.如圖,將繞點順時針旋轉(zhuǎn),得到,且點在上,下列說法錯誤的是()A.平分 B. C. D.10.剪紙是中國特有的民間藝術.以下四個剪紙圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.11.今年來某縣加大了對教育經(jīng)費的投入,2013年投入2500萬元,2015年投入3500萬元.假設該縣投入教育經(jīng)費的年平均增長率為x,根據(jù)題意列方程,則下列方程正確的是()A.2500x=3500B.2500(1+x)=3500C.2500(1+x%)=3500D.2500(1+x)+2500(1+x)=350012.若反比例函數(shù)的圖象在每一個信息內(nèi)的值隨的增大而增大,則關于的函數(shù)的圖象經(jīng)過()A.第一、三象限 B.第二、四象限C.第一、三、四象限 D.第一、二、四象限二、填空題(每題4分,共24分)13.二次函數(shù)圖象的對稱軸是______________.14.二次函數(shù)的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,作直線,將直線下方的二次函數(shù)圖象沿直線向上翻折,與其它剩余部分組成一個組合圖象,若線段與組合圖象有兩個交點,則的取值范圍為_____.15.如圖所示平面直角坐標系中,點A,C分別在x軸和y軸上,點B在第一象限,BC=BA,∠ABC=90°,反比例函數(shù)y=.(x>0)的圖象經(jīng)過點B,若OB=2,則k的值為_____.16.已知a+b=0目a≠0,則=_____.17.已知,則___________.18.一家鞋店對上一周某品牌女鞋的銷量統(tǒng)計如下:尺碼(厘米)2222.52323.52424.525銷量(雙)12511731該店決定本周進貨時,多進一些尺碼為23.5厘米的鞋,影響鞋店決策的統(tǒng)計量是___________.三、解答題(共78分)19.(8分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.(1)求證:∠ACF=∠ABD;(2)連接EF,求證:EF?CG=EG?CB.20.(8分)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.(2)請在(1)的基礎上,完成下列填空:①寫出點的坐標:C;D();②⊙D的半徑=(結果保留根號);③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為;(結果保留π)④若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由.21.(8分)如圖,已知二次函數(shù)的圖象與軸,軸分別交于A三點,A在B的左側(cè),請求出以下幾個問題:(1)求點A的坐標;(2)求函數(shù)圖象的對稱軸;(3)直接寫出函數(shù)值時,自變量x的取值范圍.22.(10分)已知:如圖,四邊形的對角線、相交于點,.(1)求證:;(2)設的面積為,,求證:S四邊形ABCD.23.(10分)如圖,在O中,弦BC垂直于半徑OA,垂足為E,D是優(yōu)弧BC上一點,連接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度數(shù).(2)若弦BC=8cm,求圖中劣弧BC的長.24.(10分)國慶期間,某風景區(qū)推出兩種旅游觀光活動付費方式:若人數(shù)不超過20人,人均繳費500元;若人數(shù)超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?25.(12分)一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4,另有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字1,2,3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.(1)用樹狀圖法或列表法求出小穎參加比賽的概率;(2)你認為游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.26.武漢市某中學進行九年級理化實驗考查,有A和B兩個考查實驗,規(guī)定每位學生只參加一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;(2)他們?nèi)酥兄辽儆袃扇藚⒓訉嶒濨的概率(直接寫出結果).

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)切線長定理得到PB=PA、CA=CE,DE=DB,根據(jù)三角形的周長公式計算即可.【詳解】解:∵PA、PB分別切⊙O于點A、B,

∴PB=PA=4,

∵CD切⊙O于點E且分別交PA、PB于點C,D,

∴CA=CE,DE=DB,

∴△PCD的周長=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,

故選:C.【點睛】本題考查的是切線長定理的應用,切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.2、D【分析】根據(jù)題意分兩種情況畫出滿足題意的線段A′B′,即可做出判斷.【詳解】解:畫出圖形,如圖所示:

故選D.【點睛】此題考查作圖-位似變換,解題關鍵是畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關鍵點;順次連接上述各點,得到放大或縮小的圖形.3、C【詳解】∵AB是⊙O的切線,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故選C.4、D【分析】把代入原方程得到關于的一元一次方程,解方程即可.【詳解】解:把代入原方程得:故選D.【點睛】本題考查的是一元二次方程的解的含義,掌握方程解的含義是解題的關鍵.5、C【分析】根據(jù)表格中的數(shù)據(jù),0與最接近,故可得其近似根.【詳解】由表得,0與最接近,故其近似根為故答案為C.【點睛】此題主要考查對近似根的理解,熟練掌握,即可解題.6、B【解析】解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質(zhì)求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.7、B【解析】∵?k2?2<0,∴函數(shù)圖象位于二、四象限,∵(?2,y1),(?1,y2)位于第二象限,?2<?1,∴y2>y1>0;又∵(,y3)位于第四象限,∴<0,∴.故選B.點睛:在反比例函數(shù)中,已知各點的橫坐標,比較縱坐標的大小,首先應區(qū)分是否在同一象限內(nèi).在同一象限內(nèi),按同一象限內(nèi)點的特點來比較,不在同一象限內(nèi),按坐標系內(nèi)點的特點來比較.8、C【分析】設出甲、乙提速前的速度,根據(jù)“乙到達B地追上甲”和“甲、乙同時從B出發(fā),到相距900米”建立二元一次方程組求出速度即可判斷A,然后根據(jù)乙到達C的時間求A、C之間的距離可判斷B,根據(jù)乙到達C時甲距C的距離及此時速度可計算時間判斷C,根據(jù)乙從C返回A時的速度和甲到達C時乙從C出發(fā)的時間即可計算路程判斷出D.【詳解】A.設甲提速前的速度為米/分,乙提速前的速度為米/分,由圖象知,當乙到達B地追上甲時,有:,化簡得:,當甲、乙同時從B地出發(fā),甲、乙間的距離為900米時,有:,化簡得:,解方程組:,得:,故甲提速前的速度為300米/分,乙提速前的速度為400米/分,故選項A正確;B.由圖象知,甲出發(fā)23分鐘后,乙到達C地,則A、C兩地相距為:(米),故選項B正確;C.由圖象知,乙到達C地時,甲距C地900米,這時,甲提速為(米/分),則甲到達C地還需要時間為:(分鐘),所以,甲從A地到C地共用時為:(分鐘),故選項C錯誤;D.由題意知,乙從C返回A時,速度為:(米/分鐘),當甲到達C地時,乙從C出發(fā)了2.25分鐘,此時,乙距A地距離為:(米),故選項D正確.故選:C.【點睛】本題為方程與函數(shù)圖象的綜合應用,正確分析函數(shù)圖象,明確特殊點的意義是解題的關鍵.9、C【分析】由題意根據(jù)旋轉(zhuǎn)變換的性質(zhì),進行依次分析即可判斷.【詳解】解:解:∵△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角是∠BAC,∴AB的對應邊為AD,BC的對應邊為DE,∠BAC對應角為∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D選項正確,C選項不正確.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的兩個圖形全等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.10、B【解析】根據(jù)軸對稱圖形的定義以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】解:A、此圖形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、此圖形是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、此圖形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;D、此圖形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的定義,熟練掌握其定義是解決問題的關鍵.11、B【分析】根據(jù)2013年教育經(jīng)費額×(1+平均年增長率)2=2015年教育經(jīng)費支出額,列出方程即可.【詳解】設增長率為x,根據(jù)題意得2500×(1+x)2=3500,故選B.【點睛】本題考查一元二次方程的應用--求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關系為a(1±x)2=b.(當增長時中間的“±”號選“+”,當下降時中間的“±”號選“-”).12、D【分析】通過反比例函數(shù)的性質(zhì)可得出m的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)可確定一次函數(shù)圖象經(jīng)過的象限.【詳解】解:∵反比例函數(shù)的圖象在每一個信息內(nèi)的值隨的增大而增大∴∴∴∴關于的函數(shù)的圖象不經(jīng)過第三象限.故選:D.【點睛】本題考查的知識點是反比例函數(shù)的性質(zhì)、一次函數(shù)的圖象與系數(shù)的關系、一次函數(shù)的性質(zhì),掌握以上知識點是解此題的關鍵.二、填空題(每題4分,共24分)13、直線【分析】根據(jù)二次函數(shù)的頂點式直接得出對稱軸.【詳解】二次函數(shù)圖象的對稱軸是x=1.故答案為:直線x=1【點睛】本題考查的是根據(jù)二次函數(shù)的頂點式求對稱軸.14、或【解析】畫出圖形,采用數(shù)形結合,分類討論討論,分直線y=t在x軸上方和下方兩種情況,需要注意的是,原拋物線與線段BC本來就有B、C兩個交點.具體過程見詳解.【詳解】解:分類討論(一):原拋物線與線段BC就有兩個交點B、C.當拋物線在x軸下方部分,以x軸為對稱軸向上翻折后,就會又多一個交點,所以要滿足只有兩個交點,直線y=t需向上平移,點B不再是交點,交點只有點C和點B、C之間的一個點,所以t>0;當以直線y=3為對稱軸向上翻折時,線段與組合圖象就只有點C一個交點了,不符合題意,所以t<3,故;(二)∵=(x-2)2-1,∴拋物線沿翻折后的部分是拋物線)2+k在直線y=t的上方部分,當直線BC:y=-x+3與拋物線只有一個交點時,即的△=0,解得k=,此時線段BC與組合圖象W的交點,既有C、B,又多一個,共三個,不符合題意,所以翻折部分需向下平移,即直線y=t向下平移,k=時,拋物線)2+的頂點坐標為(2,),與的頂點(2,-1)的中點是(2,-),所以t<-,又因為,所以.綜上所述:t的取值范圍是:或故答案為或.【點睛】本題考查拋物線的翻折和上下平移、拋物線和線段的交點問題.解題關鍵是熟練掌握二次函數(shù)的圖像和性質(zhì).15、1【分析】作BD⊥x軸于D,BE⊥y軸于E,則四邊形ODBE是矩形,利用AAS證得△ABD≌△CBE,即可證得BD=BE,然后根據(jù)勾股定理求得B的坐標,代入y=.(x>0)即可求得k的值.【詳解】如圖,作BD⊥x軸于D,BE⊥y軸于E,∴四邊形ODBE是矩形,∴∠DBE=90°,∵∠ABC=90°,∴∠ABD=∠CBE,在△ABD和△CBE中∴△ABD≌△CBE(AAS),∴BE=BD,∴四邊形ODBE是正方形,∵OB=2,根據(jù)勾股定理求得OD=BD=2,∴B(2,2),∵反比例函數(shù)y=(x>0)的圖象經(jīng)過點B,∴k=2×2=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形全等的判定和性質(zhì),求得B的坐標是解題的關鍵.16、1【分析】先將分式變形,然后將代入即可.【詳解】解:,故答案為1【點睛】本題考查了分式,熟練將式子進行變形是解題的關鍵.17、【分析】根據(jù)比例式設a=2k,b=5k,代入求值即可解題.【詳解】解:∵,設a=2k,b=5k,∴【點睛】本題考查了比例的性質(zhì),屬于簡單題,設k法是解題關鍵.18、眾數(shù)【解析】平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計量;方差、標準差是描述一組數(shù)據(jù)離散程度的統(tǒng)計量.銷量大的尺碼就是這組數(shù)據(jù)的眾數(shù).【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應最關心這組數(shù)據(jù)中的眾數(shù).故答案為眾數(shù).【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.熟練掌握均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解答本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質(zhì).20、(1)①答案見解析;②答案見解析;(2)①C(6,2);D(2,0);②;③;④相切,理由見解析.【分析】(1)①按題目的要求作圖即可②根據(jù)圓心到A、B、C距離相等即可得出D點位置;(2)①C(6,2),弦AB,BC的垂直平分線的交點得出D(2,0);

②OA,OD長已知,△OAD中勾股定理求出⊙D的半徑=2;

③求出∠ADC的度數(shù),得弧ADC的周長,求出圓錐的底面半徑,再求圓錐的底面的面積;

④△CDE中根據(jù)勾股定理的逆定理得∠DCE=90°,直線EC與⊙D相切.【詳解】(1)①②如圖所示:(2)①故答案為:C(6,2);D(2,0);②⊙D的半徑=;故答案為:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧長=圓錐的底面的半徑=,圓錐的底面的面積為π()2=;故答案為:;

(4)直線EC與⊙D相切.

證明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直線EC與⊙D相切.【點睛】本題綜合考查了圖形的性質(zhì)和坐標的確定,是綜合性較強,難度較大的綜合題,圓的圓心D是關鍵.21、(1)A()B();(2)x;(3).【分析】(1)令則,解方程即可;(2)根據(jù)二次函數(shù)的對稱軸公式代入計算即可;(3)結合函數(shù)圖像,取函數(shù)圖像位于x軸下方部分,寫出x取值范圍即可.【詳解】解:(1)令則,解得∴A()B();(2)∴對稱軸為;(3)∵,∴圖像位于x軸下方,∴x取值范圍為.【點睛】本題考查了二次函數(shù)與一元二次方程關系,對稱軸求法,二次函數(shù)與不等式的關系,熟記相關知識是解題關鍵.22、(1)證明見解析;(2)證明見解析【分析】(1)由S△AOD=S△BOC易得S△ADB=S△ACB,根據(jù)三角形面積公式得到點D和點C到AB的距離相等,則CD∥AB,于是可判斷△DOC∽△BOA,然后利用相似比即可得到結論;

(2)利用相似三角形的性質(zhì)可得結論.【詳解】(1)∵S△AOD=S△BOC,

∴S△AOD+S△AOB=S△BOC+S△AOB,即S△ADB=S△ACB,

∴CD∥AB,

∴△DOC∽△BOA,

∴;

(2)∵△DOC∽△BOA

∴=k,2=k2,

∴DO=kOB,CO=kAO,S△COD=k2S,

∴S△AOD=kS△OAB=kS,S△COB=kS△OAB=kS,

∴S四邊形ABCD=S+kS+kS+k2S=(k+1)2S.【點睛】此題考查相似三角形的判定和性質(zhì),證明△DOC∽△BOA是解題的關鍵.23、(1)60°;(2)【分析】(1)先根據(jù)垂徑定理得出BE=CE,,再根據(jù)圓周角定理即可得出∠AOC的度數(shù);(2)連接OB,先根據(jù)勾股定理得出OE的長,由弦BC=8cm,可得半徑的長,繼而求劣弧的長;【詳解】解:(1)連接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)連接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的長為:【點睛】本題主要考查了勾股定理,垂徑定理,圓周角定理,掌握勾股定理,垂徑定理,圓周角定理是解題的關鍵.24、30【分析】設該單位一共組織了x位職工參加旅游觀光活動,求出當人數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論