湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題含解析_第1頁
湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題含解析_第2頁
湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題含解析_第3頁
湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題含解析_第4頁
湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南株洲市景炎學(xué)校2025屆數(shù)學(xué)九上期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F(xiàn),若BE=3,AF=5,則AC的長為()A. B. C.10 D.82.若反比例函數(shù)的圖像在第二、四象限,則它的解析式可能是()A. B. C. D.3.若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則m的值可能是()A.3 B.2 C.1 D.04.如圖,在平面直角坐標(biāo)系中,將△ABC向右平移3個單位長度后得△A1B1C1,再將△A1B1C1繞點O旋轉(zhuǎn)180°后得到△A2B2C2,則下列說法正確的是()A.A1的坐標(biāo)為(3,1) B.S四邊形ABB1A1=3 C.B2C=2 D.∠AC2O=45°5.如圖,在正方形ABCD中,AB=4,AC與相交于點O,N是AO的中點,點M在BC邊上,P是OD的中點,過點P作PM⊥BC于點M,交于點N′,則PN-MN′的值為()A. B. C. D.6.設(shè)m是方程的一個較大的根,n是方程的一個較小的根,則的值是()A. B. C.1 D.27.如圖,Rt△ABC中,∠C=90°,AC=3,BC=1.分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BCMN,四塊陰影部分的面積分別為S1、S2、S3、S1.則S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.128.下列判斷錯誤的是()A.有兩組鄰邊相等的四邊形是菱形 B.有一角為直角的平行四邊形是矩形C.對角線互相垂直且相等的平行四邊形是正方形 D.矩形的對角線互相平分且相等9.如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,則直線與⊙O的位置關(guān)系是()A.相離 B.相切 C.相交 D.以上三種情況都有可能10.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.11.某工廠一月份生產(chǎn)機(jī)器100臺,計劃二、三月份共生產(chǎn)機(jī)器240臺,設(shè)二、三月份的平均增長率為x,則根據(jù)題意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=24012.拋物線y=2x2,y=﹣2x2,y=2x2+1共有的性質(zhì)是()A.開口向上 B.對稱軸都是y軸C.都有最高點 D.頂點都是原點二、填空題(每題4分,共24分)13.計算sin60°tan60°-cos45°cos60°的結(jié)果為______.14.m、n分別為的一元二次方程的兩個不同實數(shù)根,則代數(shù)式的值為________15.如圖,扇形OAB的圓心角為110°,C是上一點,則∠C=_____°.16.如圖,已知⊙的半徑為1,圓心在拋物線上運動,當(dāng)⊙與軸相切時,圓心的坐標(biāo)是___________________.17.某種商品每件進(jìn)價為20元,調(diào)查表明:在某段時間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應(yīng)為______元.18.已知函數(shù),當(dāng)時,函數(shù)值y隨x的增大而增大.三、解答題(共78分)19.(8分)元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.(1)求甲、乙兩種蘋果的進(jìn)價分別是每千克多少元?(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.20.(8分)下面是小東設(shè)計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.已知:⊙O及⊙O外一點P.求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.作法:如圖,①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;③作直線PA和直線PB.所以直線PA和PB就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)(2)完成下面的證明.證明:∵OP是⊙Q的直徑,∴∠OAP=∠OBP=________°()(填推理的依據(jù)).∴PA⊥OA,PB⊥OB.∵OA,OB為⊙O的半徑,∴PA,PB是⊙O的切線.21.(8分)如圖,在正方形ABCD中,點E在邊CD上(不與點C,D重合),連接AE,BD交于點F.(1)若點E為CD中點,AB=2,求AF的長.(2)若∠AFB=2,求的值.(3)若點G在線段BF上,且GF=2BG,連接AG,CG,設(shè)=x,四邊形AGCE的面積為,ABG的面積為,求的最大值.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,直線y=x﹣2與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象在第一象限內(nèi)交于點A,點A的橫坐標(biāo)為1.(1)求反比例函數(shù)的表達(dá)式;(2)設(shè)直線y=x﹣2與y軸交于點C,過點A作AE⊥x軸于點E,連接OA,CE.求四邊形OCEA的面積.23.(10分)拋物線y=ax2+bx+1經(jīng)過點A(﹣1,0),B(1,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<1.連接AC,BC,DB,DC.(1)求該拋物線的解析式;(2)當(dāng)△BCD的面積等于△AOC的面積的2倍時,求點D的坐標(biāo);(1)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標(biāo);若不存在,請說明理由.24.(10分)期中考試中,A,B,C,D,E五位同學(xué)的數(shù)學(xué)、英語成績有如表信息:ABCDE平均分中位數(shù)數(shù)學(xué)7172696870英語8882948576(1)完成表格中的數(shù)據(jù);(2)為了比較不同學(xué)科考試成績的好與差,采用標(biāo)準(zhǔn)分是一個合理的選擇,標(biāo)準(zhǔn)分的計算公式是:標(biāo)準(zhǔn)分=(個人成績﹣平均成績)÷成績方差.從標(biāo)準(zhǔn)分看,標(biāo)準(zhǔn)分高的考試成績更好,請問A同學(xué)在本次考試中,數(shù)學(xué)與英語哪個學(xué)科考得更好?25.(12分)如圖,AB是的直徑,AC為弦,的平分線交于點D,過點D的切線交AC的延長線于點E.求證:;.26.如圖,已知為⊙的直徑,為⊙的一條弦,點是⊙外一點,且,垂足為點,交⊙于點,的延長線交⊙于點,連接.(1)求證:;(2)若,求證:是⊙的切線;(3)若,,求⊙的半徑.

參考答案一、選擇題(每題4分,共48分)1、A【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【點睛】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.2、A【分析】根據(jù)反比例函數(shù)的定義及圖象經(jīng)過第二、四象限時,判斷即可.【詳解】解:、對于函數(shù),是反比例函數(shù),其,圖象位于第二、四象限;、對于函數(shù),是正比例函數(shù),不是反比例函數(shù);、對于函數(shù),是反比例函數(shù),圖象位于一、三象限;、對于函數(shù),是二次函數(shù),不是反比例函數(shù);故選:A.【點睛】本題考查了反比例函數(shù)、反比例的圖象和性質(zhì),可以采用排除法,直接法得出答案.3、D【解析】由題意可知,該一元二次方程根的判別式的值大于零,即(-2)2-4m>0,∴m<1.對照本題的四個選項,只有D選項符合上述m的取值范圍.故本題應(yīng)選D.4、D【解析】試題分析:如圖:A、A1的坐標(biāo)為(1,3),故錯誤;B、=3×2=6,故錯誤;C、B2C==,故錯誤;D、變化后,C2的坐標(biāo)為(-2,-2),而A(-2,3),由圖可知,∠AC2O=45°,故正確.故選D.5、A【分析】根據(jù)正方形的性質(zhì)可得點O為AC的中點,根據(jù)三角形中位線的性質(zhì)可求出PN的長,由PM⊥BC可得PM//CD,根據(jù)點P為OD中點可得點N′為OC中點,即可得出AC=4CN′,根據(jù)MN′//AB可得△CMN′∽△CBA,根據(jù)相似三角形的性質(zhì)可求出MN′的長,進(jìn)而可求出PN-MN′的長.【詳解】∵四邊形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中點,P是OD的中點,∴PN是△AOD的中位線,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴點N′為OC的中點,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故選:A.【點睛】本題考查正方形的性質(zhì)、三角形中位線的性質(zhì)及相似三角形的判定與性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半;熟練掌握三角形中位線的性質(zhì)及相似三角形的判定定理是解題關(guān)鍵.6、C【分析】先解一元二次方程求出m,n即可得出答案.【詳解】解方程得或,則,解方程,得或,則,,故選:C.【點睛】本題考查了解一元二次方程,掌握方程解法是解題關(guān)鍵.7、B【解析】本題先根據(jù)正方形的性質(zhì)和等量代換得到判定全等三角形的條件,再根據(jù)全等三角形的判定定理和面積相等的性質(zhì)得到S、S、、與△ABC的關(guān)系,即可表示出圖中陰影部分的面積和.本題的著重點是等量代換和相互轉(zhuǎn)化的思想.【詳解】解:如圖所示,過點F作FG⊥AM交于點G,連接PF.根據(jù)正方形的性質(zhì)可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可證,△KME≌△TPF,△FGK≌△ACT,因為∠QAG=∠AGF=∠AQF=90,所以四邊形AQFG是矩形,則QF//AG,又因為QP//AC,所以點Q、P,F三點共線,故S+S=,S=.因為∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因為∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可證△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本題正確答案為B.【點睛】本題主要考查正方形和全等三角形的判定與性質(zhì).8、A【分析】根據(jù)菱形,矩形,正方形的判定逐一進(jìn)行分析即可.【詳解】A.有兩組鄰邊相等的四邊形不一定是菱形,故該選項錯誤;B.有一角為直角的平行四邊形是矩形,故該選項正確;C.對角線互相垂直且相等的平行四邊形是正方形,故該選項正確;D.矩形的對角線互相平分且相等,故該選項正確;故選:A.【點睛】本題主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解題的關(guān)鍵.9、B【詳解】解:如圖,在中,令x=0,則y=-;令y=0,則x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,過點O作OD⊥AB,則OD=BD=AB=×2=1.又∵⊙O的半徑為1,∴圓心到直線的距離等于半徑.∴直線y=x-2與⊙O相切.故選B.10、B【分析】連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設(shè)小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質(zhì),直角三角形的判定的應(yīng)用,關(guān)鍵是構(gòu)造直角三角形.11、B【分析】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)二月份的生產(chǎn)量+三月份的生產(chǎn)量=1臺,列出方程即可.【詳解】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)題意,得100(1+x)+100(1+x)2=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,設(shè)出未知數(shù),正確找出等量關(guān)系是解決問題的關(guān)鍵.12、B【詳解】(1)y=2x2開口向上,對稱軸為y軸,有最低點,頂點為原點;(2)y=﹣2x2開口向下,對稱軸為y軸,有最高點,頂點為原點;(3)y=2x2+1開口向上,對稱軸為y軸,有最低點,頂點為(0,1).故選B.二、填空題(每題4分,共24分)13、1【分析】直接利用特殊角的三角函數(shù)值分別代入求出答案.【詳解】解:原式=1【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.14、1【分析】由一元二次方程的解的定義可得m2-4m-1=1,則m2-4m=1,再由根于系數(shù)的關(guān)系可得mn=-1,最后整體代入即可解答.【詳解】解:∵m、n分別為的一元二次方程∴m+n=4,mn=-1,m2-4m-1=1,∴m2-4m=1∴=1-1=1故答案為1.【點睛】本題考查了一元二次方程的解和根與系數(shù)的關(guān)系,其中正確運用根與系數(shù)的關(guān)系是解答本題的關(guān)鍵.15、1【分析】作所對的圓周角∠ADB,如圖,根據(jù)圓周角定理得到∠ADB=∠AOB=55°,然后利用圓內(nèi)接四邊形的性質(zhì)計算∠C的度數(shù).【詳解】解:作所對的圓周角∠ADB,如圖,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案為1.【點睛】本題考查了圓的綜合問題,掌握圓周角定理、圓內(nèi)接四邊形的性質(zhì)是解題的關(guān)鍵.16、或或或【分析】根據(jù)圓與直線的位置關(guān)系可知,當(dāng)⊙與軸相切時,P點的縱坐標(biāo)為1或-1,把1或-1代入到拋物線的解析式中求出橫坐標(biāo)即可.【詳解】∵⊙的半徑為1,∴當(dāng)⊙與軸相切時,P點的縱坐標(biāo)為1或-1.當(dāng)時,,解得,∴此時P的坐標(biāo)為或;當(dāng)時,,解得,∴此時P的坐標(biāo)為或;故答案為:或或或.【點睛】本題主要考查直線與圓的位置關(guān)系和已知函數(shù)值求自變量,根據(jù)圓與x軸相切找到點P的縱坐標(biāo)的值是解題的關(guān)鍵.17、3【解析】試題分析:設(shè)最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當(dāng)x=3時,二次函數(shù)有最大值3,故答案為3.考點:3.二次函數(shù)的應(yīng)用;3.銷售問題.18、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當(dāng)x≤﹣1時,y隨x的增大而增大,故答案為x≤﹣1.考點:二次函數(shù)的性質(zhì).三、解答題(共78分)19、(1)甲、乙兩種蘋果的進(jìn)價分別為10元/千克,8元/千克;(2)的值為2或7.【分析】(1)根據(jù)題意列二元一次方程組即可求解,(2)根據(jù)題意列一元二次方程即可求解.【詳解】(1)解:設(shè)甲、乙兩種蘋果的進(jìn)價分別為元/千克,元/千克.由題得:解之得:答:甲、乙兩種蘋果的進(jìn)價分別為10元/千克,8元/千克(2)由題意得:解之得:,經(jīng)檢驗,,均符合題意答:的值為2或7.【點睛】本題考查了二元一次方程組和一元二次方程的實際應(yīng)用,中等難度,列方程是解題關(guān)鍵.20、(1)補(bǔ)全圖形見解析;(2)90;直徑所對的圓周角是直角.【分析】(1)根據(jù)題中得方法依次作圖即可;(2)直徑所對的圓周角是直角,據(jù)此填寫即可.【詳解】(1)補(bǔ)全圖形如圖(2)∵直徑所對的圓周角是直角,∴∠OAP=∠OBP=90°,故答案為:90;直徑所對的圓周角是直角,【點睛】本題主要考查了尺規(guī)作圖以及圓周角性質(zhì),熟練掌握相關(guān)方法是解題關(guān)鍵.21、(1);(2);(3).【分析】(1)由可得DE的長,利用勾股定理可得AE的長,又易證,由相似三角形的性質(zhì)可得,求解即可得;(2)如圖(見解析),連接AC與BD交于點O,由正方形的性質(zhì)可知,,,設(shè),在中,可求出,從而可得DF和BF的長,即可得出答案;(3)設(shè)正方形的邊長,可得DE、AO、BO、BD的長,由可得BF的長,又根據(jù)可得BG的長,從而可得的面積,用正方形的面積減去三個三角形的面積可得四邊形AGCE的面積,再利用二次函數(shù)的性質(zhì)求解的最大值.【詳解】(1)為CD中點,,,即又;(2)如圖,連接AC與BD交于點O由正方形的性質(zhì)得,設(shè)在中,,;(3)設(shè)正方形的邊長,則由(1)知,又又又由二次函數(shù)圖象的性質(zhì)得:當(dāng)時,有最大值,最大值為.【點睛】本題考查了相似三角形的判定定理和性質(zhì)、正切三角函數(shù)、二次函數(shù)圖象的性質(zhì),難度較大的是題(3),利用相似三角形的性質(zhì)求出BG的長是解題關(guān)鍵.22、(1)y=;(2)2.【分析】(1)先求出點A的坐標(biāo),然后利用待定系數(shù)法即可求出結(jié)論;(2)先求出點C的坐標(biāo),然后求出點E的坐標(biāo),最后利用四邊形OCEA的面積=+即可得出結(jié)論.【詳解】解:(1)當(dāng)x=1時,y=x﹣2=1﹣2=2,則A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函數(shù)解析式為y=;(2)當(dāng)x=0時,y=x﹣2=﹣2,則C(0,﹣2),∵AE⊥x軸于點E,∴E(1,0),∴四邊形OCEA的面積=+=×1×2+×1×2=2.【點睛】此題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握利用待定系數(shù)法求反比例函數(shù)解析式和三角形的面積公式是解決此題的關(guān)鍵.23、(1)拋物線的解析式為y=﹣x2+2x+1;(2)點D坐標(biāo)(2,1);(1)M坐標(biāo)(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據(jù)解析式先求出△AOC的面積,設(shè)點D(xD,yD),由直線BC的解析式表示點E的坐標(biāo),求出DE的長,再由△BCD的面積等于△AOC的面積的2倍,列出關(guān)于xD的方程得到點D的坐標(biāo);(1)設(shè)點M(m,0),點N(x,y),分兩種情況討論:當(dāng)BD為邊時或BD為對角線時,列中點關(guān)系式解答.【詳解】解:(1)∵拋物線y=ax2+bx+1經(jīng)過點A(﹣1,0),B(1,0),∴,解得:∴拋物線的解析式為y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸,與直線BC交于點E,∵拋物線y=﹣x2+2x+1,與y軸交于點C,∴點C(0,1),∴OC=1,∴S△AOC=×1×1=,∵點B(1,0),點C(0,1)∴直線BC解析式為y=﹣x+1,∵點D(xD,yD),∴點E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面積等于△AOC的面積的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴點D坐標(biāo)(2,1);(1)設(shè)點M(m,0),點N(x,y)當(dāng)BD為邊,四邊形BDNM是平行四邊形,∴BN與DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴,∴m=1,當(dāng)BD為邊,四邊形BDMN是平行四邊形,∴BM與DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,當(dāng)BD為對角線,∴BD中點坐標(biāo)(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴m=5,綜上所述點M坐標(biāo)(1,0)或(,0)或(﹣,0)或(5,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,動線、動圖形與拋物線的結(jié)合問題,在(1)使以點B,D,M,N為頂點的四邊形是平行四邊形時,要分情況討論:當(dāng)BD為邊時或BD為對角線時,不要有遺漏,平行四邊形的性質(zhì):對角線互相平分,列中點坐標(biāo)等式求得點M的坐標(biāo).24、(1)70,70,85,85;(2)數(shù)學(xué).【分析】(1)由平均數(shù)、中位數(shù)的定義進(jìn)行計算即可;(2)代入公式:標(biāo)準(zhǔn)分=(個人成績﹣平均成績)÷成績方差計算,再比較即可.【詳解】(1)數(shù)學(xué)平均分是:×(71+72+69+68+70)=70分,中位數(shù)為:70分;英語平均分是:×(88+82+94+85+76)=85分,中位數(shù)為:85分;故答案為:70,70,85,85;(2)數(shù)學(xué)成績的方差為:[(71﹣70)2+(72﹣70)2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論