![內(nèi)蒙古自治區(qū)滿洲里市2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view14/M03/09/10/wKhkGWadocCAMVqZAAHc7Hwvee8941.jpg)
![內(nèi)蒙古自治區(qū)滿洲里市2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view14/M03/09/10/wKhkGWadocCAMVqZAAHc7Hwvee89412.jpg)
![內(nèi)蒙古自治區(qū)滿洲里市2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view14/M03/09/10/wKhkGWadocCAMVqZAAHc7Hwvee89413.jpg)
![內(nèi)蒙古自治區(qū)滿洲里市2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view14/M03/09/10/wKhkGWadocCAMVqZAAHc7Hwvee89414.jpg)
![內(nèi)蒙古自治區(qū)滿洲里市2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view14/M03/09/10/wKhkGWadocCAMVqZAAHc7Hwvee89415.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在中,點在邊上,連接,點在線段上,,且交于點,,且交于點,則下列結(jié)論錯誤的是()A. B. C. D.2.王洪存銀行5000元,定期一年后取出3000元,剩下的錢繼續(xù)定期一年存入,如果每年的年利率不變,到期后取出2750元,則年利率為()A.5% B.20% C.15% D.10%3.從1、2、3、4四個數(shù)中隨機(jī)選取兩個不同的數(shù),分別記為,,則滿足的概率為()A. B. C. D.4.如圖,以原點O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點,P是上一點(不與A,B重合),連接OP,設(shè)∠POB=α,則點P的坐標(biāo)是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)5.如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為()A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變6.如圖,在平面直角坐標(biāo)系中,點在函數(shù)的圖象上,點在函數(shù)的圖象上,軸于點.若,則的值為()A. B. C. D.7.將y=﹣(x+4)2+1的圖象向右平移2個單位,再向下平移3個單位,所得函數(shù)最大值為()A.y=﹣2 B.y=2 C.y=﹣3 D.y=38.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.29.如圖,要測量小河兩岸相對兩點、寬度,可以在小河邊的垂線上取一點,則得,,則小河的寬等于()A. B. C. D.10.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,則sinB的值等于()A. B. C. D.二、填空題(每小題3分,共24分)11.對于實數(shù),定義運算“◎”如下:◎.若◎,則_____.12.如圖,二次函數(shù)的圖象記為,它與軸交于點,;將繞點旋轉(zhuǎn)180°得,交軸于點;將繞點旋轉(zhuǎn)180°得,交軸于點;……如此進(jìn)行下去,得到一條“波浪線”.若在這條“波浪線”上,則____.13.如果一元二次方程有兩個相等的實數(shù)根,那么是實數(shù)的取值為________.14.若拋物線經(jīng)過(3,0),對稱軸經(jīng)過(1,0),則_______.15.拋物線y=x2﹣4x+3的頂點坐標(biāo)為_____.16.化簡:__________.17.從實數(shù)中,任取兩個數(shù),正好都是無理數(shù)的概率為________.18.小麗微信支付密碼是六位數(shù)(每一位可顯示0~9),由于她忘記了密碼的末位數(shù)字,則小麗能一次支付成功的概率是__________.三、解答題(共66分)19.(10分)如圖,點是正方形邊.上一點,連接,作于點,于點,連接.(1)求證:;(2)己知,四邊形的面積為,求的值.20.(6分)如圖,已知菱形ABCD兩條對角線BD與AC的長之比為3:4,周長為40cm,求菱形的高及面積.21.(6分)關(guān)于的一元二次方程有兩個不相等且非零的實數(shù)根,探究滿足的條件.小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,認(rèn)為可以從二次函數(shù)的角度研究一元二次方程的根的符號。下面是小華的探究過程:第一步:設(shè)一元二次方程對應(yīng)的二次函數(shù)為;第二步:借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次方程中滿足的條件,列表如下表。方程兩根的情況對應(yīng)的二次函數(shù)的大致圖象滿足的條件方程有兩個不相等的負(fù)實根①_______方程有兩個不相等的正實根②③____________(1)請將表格中①②③補(bǔ)充完整;(2)已知關(guān)于的方程,若方程的兩根都是正數(shù),求的取值范圍.22.(8分)如圖1,在平面直角坐標(biāo)系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.(1)求點P的坐標(biāo)及直線AC的解析式;(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;(3)如圖3,點M為線段OA上一點,以O(shè)M為邊在第一象限內(nèi)作正方形OMNG,當(dāng)正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當(dāng)點M與點A重合時停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.23.(8分)已知關(guān)于的方程①求證:方程有兩個不相等的實數(shù)根.②若方程的一個根是求另一個根及的值.24.(8分)為了“城市更美好、人民更幸?!保沂虚_展“三城聯(lián)創(chuàng)”活動,環(huán)衛(wèi)部門要求垃圾按三類分別裝袋、投放,其中類指廢電池,過期藥品等有毒垃圾,類指剩余食品等廚余垃圾,類指塑料、廢紙等可回收垃圾,甲、乙兩人各投放一袋垃圾.(1)甲投放的垃圾恰好是類的概率是;(2)用樹狀圖或表格求甲、乙兩人投放的垃圾是不同類別的概率.25.(10分)如圖,在中,,,,動點從點出發(fā),沿方向勻速運動,速度為;同時,動點從點出發(fā),沿方向勻速運動,速度為;當(dāng)一個點停止運動,另一個點也停止運動.設(shè)點,運動的時間是.過點作于點,連接,.(1)為何值時,?(2)設(shè)四邊形的面積為,試求出與之間的關(guān)系式;(3)是否存在某一時刻,使得若存在,求出的值;若不存在,請說明理由;(4)當(dāng)為何值時,?26.(10分)如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.(1)求證:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)平行線截得的線段對應(yīng)成比例以及相似三角形的性質(zhì)定理,逐一判斷選項,即可得到答案.【詳解】∵,,∴,∴A正確,∵,∴,∴B正確,∵?DFG~?DCA,?AEG~?ABD,∴,,∴,∴C錯誤,∵,,∴,∴D正確,故選C.【點睛】本題主要考查平行線截線段定理以及相似三角形的性質(zhì)定理,掌握平行線截得的線段對應(yīng)成比例是解題的關(guān)鍵.2、D【分析】設(shè)定期一年的利率是x,則存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年則有方程[5000(1+x)﹣3000]?(1+x)=2750,解這個方程即可求解.【詳解】設(shè)定期一年的利率是x,根據(jù)題意得:一年時:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理兩年后是[5000(1+x)﹣3000](1+x),即方程為[5000(1+x)﹣3000]?(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合題意,故舍去),即年利率是10%.故選:D.【點睛】此題考查了列代數(shù)式及一元二次方程的應(yīng)用,是有關(guān)利率的問題,關(guān)鍵是掌握公式:本息和=本金×(1+利率×期數(shù)),難度一般.3、C【分析】根據(jù)題意列出樹狀圖,得到所有a、c的組合再找到滿足的數(shù)對即可.【詳解】如圖:符合的共有6種情況,而a、c的組合共有12種,故這兩人有“心靈感應(yīng)”的概率為.故選:C.【點睛】此題考查了利用樹狀圖法求概率,要做到勿漏、勿多,同時要適時利用概率公式解答.4、C【解析】過P作PQ⊥OB,交OB于點Q,在直角三角形OPQ中,利用銳角三角函數(shù)定義表示出OQ與PQ,即可確定出P的坐標(biāo).解:過P作PQ⊥OB,交OB于點Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,則P的坐標(biāo)為(cosα,sinα),故選C.5、D【解析】如圖,作輔助線;首先證明△BEO∽△OFA,,得到;設(shè)B為(a,),A為(b,),得到OE=-a,EB=,OF=b,AF=,進(jìn)而得到,此為解決問題的關(guān)鍵性結(jié)論;運用三角函數(shù)的定義證明知tan∠OAB=為定值,即可解決問題.【詳解】解:分別過B和A作BE⊥x軸于點E,AF⊥x軸于點F,則△BEO∽△OFA,∴,設(shè)點B為(a,),A為(b,),則OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根據(jù)勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一個定值,因此∠OAB的大小保持不變.故選D【點睛】該題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征、相似三角形的判定等知識點及其應(yīng)用問題;解題的方法是作輔助線,將分散的條件集中;解題的關(guān)鍵是靈活運用相似三角形的判定等知識點來分析、判斷、推理或解答.6、A【分析】設(shè)A的橫坐標(biāo)為a,則縱坐標(biāo)為,根據(jù)題意得出點B的坐標(biāo)為,代入y=(x<0)即可求得k的值.【詳解】解:設(shè)A的橫坐標(biāo)為a,則縱坐標(biāo)為,
∵AC=3BC,∴B的橫坐標(biāo)為-a,
∵AB⊥y軸于點C,∴AB∥x軸,∴B(-a,),
∵點B在函數(shù)y=(x<0)的圖象上,∴k=-a×=-1,
故選:A.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征,表示出點B的坐標(biāo)是解題的關(guān)鍵.7、A【分析】根據(jù)二次函數(shù)圖象“左移x加,右移x減,上移c加,下移c減”的規(guī)律即可知平移后的解析式,進(jìn)而可判斷最值.【詳解】將y=﹣(x+4)1+1的圖象向右平移1個單位,再向下平移3個單位,所得圖象的函數(shù)表達(dá)式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其頂點坐標(biāo)是(﹣1,﹣1),由于該函數(shù)圖象開口方向向下,所以,所得函數(shù)的最大值是﹣1.故選:A.【點睛】本題主要考查二次函數(shù)圖象的平移問題和最值問題,熟練掌握平移規(guī)律是解題關(guān)鍵.8、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質(zhì),掌握圓周角定理的推論及相似三角形的性質(zhì)是解題的關(guān)鍵.9、C【分析】利用∠ABC的正切函數(shù)求解即可.【詳解】解:∵AC⊥CD,,,∴小河寬AC=BC·tan∠ABC=100tan50°(m).?故選C.【點睛】本題考查了解直角三角形的應(yīng)用,解決此問題的關(guān)鍵在于正確理解題意得基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.10、C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=,故選C.二、填空題(每小題3分,共24分)11、-3或4【分析】利用新定義得到,整理得到,然后利用因式分解法解方程.【詳解】根據(jù)題意得,,,,或,所以.故答案為或.【點睛】本題考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.12、1【分析】根據(jù)拋物線與x軸的交點問題,得到圖象C1與x軸交點坐標(biāo)為:(1,1),(2,1),再利用旋轉(zhuǎn)的性質(zhì)得到圖象C2與x軸交點坐標(biāo)為:(2,1),(4,1),則拋物線C2:y=(x-2)(x-4)(2≤x≤4),于是可推出橫坐標(biāo)x為偶數(shù)時,縱坐標(biāo)為1,橫坐標(biāo)是奇數(shù)時,縱坐標(biāo)為1或-1,由此即可解決問題.【詳解】解:∵一段拋物線C1:y=-x(x-2)(1≤x≤2),
∴圖象C1與x軸交點坐標(biāo)為:(1,1),(2,1),
∵將C1繞點A1旋轉(zhuǎn)181°得C2,交x軸于點A2;,
∴拋物線C2:y=(x-2)(x-4)(2≤x≤4),
將C2繞點A2旋轉(zhuǎn)181°得C3,交x軸于點A3;
…
∴P(2121,m)在拋物線C1111上,
∵2121是偶數(shù),
∴m=1,故答案為1.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.13、【分析】根據(jù)一元二次方程有兩個相等的實數(shù)根,得知其判別式的值為0,即=32-4×2×m=0,解得m即可.【詳解】解:根據(jù)題意得,=32-4×2×m=0,
解得m=.故答案為:.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與=b2-4ac有如下關(guān)系:當(dāng)>0時,方程有兩個不相等的實數(shù)根;當(dāng)=0時,方程有兩個相等的實數(shù)根;當(dāng)<0時,方程無實數(shù)根.14、1【分析】由題意得,由函數(shù)圖象的對稱軸為直線x=1,根據(jù)點(3,1),求得圖象過另一點(?1,1),代入可得a?b+c=1.【詳解】解:由題意得:拋物線對稱軸為直線x=1,又圖象過點(3,1),∵點(3,1)關(guān)于直線x=1對稱的點為(-1,1),
則圖象也過另一點(?1,1),即x=?1時,a?b+c=1.
故答案為:1.【點睛】本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系以及二次函數(shù)的對稱行,重點是確定點(3,1)關(guān)于直線x=1對稱的點為(-1,1).15、(2,﹣1).【解析】先把函數(shù)解析式配成頂點式得到y(tǒng)=(x-2)2-1,然后根據(jù)頂點式即可得到頂點坐標(biāo).解:y=(x-2)2-1,
所以拋物線的頂點坐標(biāo)為(2,-1).
故答案為(2,-1).“點睛”本題考查了二次函數(shù)的性質(zhì).二次函數(shù)的三種形式:一般式:y=ax2+bx+c,頂點式:y=(x-h)2+k;兩根式:y=a(x-x1)(x-x2).16、0【分析】根據(jù)cos(90°-A)=sinA,以及特殊角的三角函數(shù)值,進(jìn)行化簡,即可.【詳解】原式====0.故答案是:0【點睛】本題主要考查三角函數(shù)常用公式以及特殊角三角函數(shù)值,掌握三角函數(shù)的常用公式,是解題的關(guān)鍵.17、【分析】畫樹狀圖展示所有等可能的結(jié)果數(shù),再找出兩次選到的數(shù)都是無理數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:則共有6種等可能的結(jié)果,其中兩次選到的數(shù)都是無理數(shù)有()和()2種,所以兩次選到的數(shù)都是無理數(shù)的概率.故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.18、【分析】根據(jù)題意可知密碼的末位數(shù)字一共有10種等可能的結(jié)果,小麗能一次支付成功的只有1種情況,直接利用概率公式求解即可.【詳解】解:∵密碼的末位數(shù)字一共有10種等可能的結(jié)果,小麗能一次支付成功的只有1種情況,∴小麗能一次支付成功的概率是.故答案為:.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)首先由正方形的性質(zhì)得出BA=AD,∠BAD=90°,又由DE⊥AM于點E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先設(shè)AE=x,則BF=x,DE=AF=2,然后將四邊形的面積轉(zhuǎn)化為兩個三角形的面積之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【詳解】(1)證明:∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)設(shè)AE=x,則BF=x,DE=AF=2,∵四邊形ABED的面積為24,∴?x?x+?x?2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【點睛】此題主要考查正方形的性質(zhì)以及三角形全等的判定與性質(zhì)、勾股定理的運用,熟練掌握,即可解題.20、菱形的高是9.6cm,面積是96cm1.【解析】根據(jù)菱形的對角線互相垂直平分,利用勾股定理求出AC與BD的長,再由菱形面積公式求出所求即可.【詳解】解:∵BD:AC=3:4,∴設(shè)BD=3x,AC=4x,∴BO=,AO=1x,又∵AB1=BO1+AO1,∴AB=x,∵菱形的周長是40cm,∴AB=40÷4=10cm,即x=10,∴x=4,∴BD=11cm,AC=16cm,∴S?ABCD=BD?AC=×11×16=96(cm1),又∵S?ABCD=AB?h,∴h==9.6(cm),答:菱形的高是9.6cm,面積是96cm1.【點睛】此題考查了菱形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解本題的關(guān)鍵.21、(1)①方程有一個負(fù)實根,一個正實根;②詳見解析;③;(2)【分析】(1)根據(jù)函數(shù)的圖象與性質(zhì)即可得;(2)先求出方程的根的判別式,再利用③即可得出答案.【詳解】(1)由函數(shù)的圖象與性質(zhì)得:①函數(shù)圖象與x的負(fù)半軸和正半軸各有一個交點,則方程有一個負(fù)實根,一個正實根;②函數(shù)圖象與x軸的兩個交點均在x軸的正半軸上,畫圖如下所示:;③由②可得:;(2)方程的根的判別式為,則此方程有兩個不相等的實數(shù)根由題意,可利用③得:,解得則方程組的解為故k的取值范圍是.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,掌握二次函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.22、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值為﹣3或,理由見解析【分析】(1)由拋物線y=x2+x+3可求出點C,P,A的坐標(biāo),再用待定系數(shù)法,可求出直線AC的解析式;(2)在OC上取點H(0,),連接HF,AH,求出AH的長度,證△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;(3)先求出正方形的邊長,通過△ARM∽△ACO將相關(guān)線段用含t的代數(shù)式表示出來,再分三種情況進(jìn)行討論:當(dāng)∠O'RP=90°時,當(dāng)∠PO'R=90°時,當(dāng)∠O'PR=90°時,分別構(gòu)造相似三角形,即可求出t的值,其中第三種情況不存在,舍去.【詳解】(1)在拋物線y=x2+x+3中,當(dāng)x=0時,y=3,∴C(0,3),當(dāng)y=3時,x1=0,x2=2,∴P(2,3),當(dāng)y=0時,則x2+x+3=0,解得:x1=﹣4,x2=6,B(﹣4,0),A(6,0),設(shè)直線AC的解析式為y=kx+3,將A(6,0)代入,得,k=﹣,∴y=﹣x+3,∴點P坐標(biāo)為P(2,3),直線AC的解析式為y=﹣x+3;(2)在OC上取點H(0,),連接HF,AH,則OH=,AH=,∵,,且∠HOF=∠FOC,∴△HOF∽△FOC,∴,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值為;(3)∵正方形OMNG的頂點N恰好落在線段AC上,∴GN=MN,∴設(shè)N(a,a),將點N代入直線AC解析式,得,a=﹣a+3,∴a=2,∴正方形OMNG的邊長是2,∵平移的距離為t,∴平移后OM的長為t+2,∴AM=6﹣(t+2)=4﹣t,∵RM∥OC,∴△ARM∽△ACO,∴,即,∴RM=2﹣t,如圖3﹣1,當(dāng)∠O'RP=90°時,延長RN交CP的延長線于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴,∵PQ=2+t-2=t,QR=3﹣RM=1+t,∴,解得,t1=﹣3﹣(舍去),t2=﹣3;如圖3﹣2,當(dāng)∠PO'R=90°時,∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,∴∠RO'M=∠EPO',又∵∠PEO'=∠O'MR=90°,∴△PEO'∽△O'MR,∴,即,解得,t=;如圖3﹣3,當(dāng)∠O'PR=90°時,延長O’G交CP于K,延長MN交CP的延長線于點T,∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,∴∠KO'P=∠TPR,又∵∠O'KP=∠T=90°,∴△KO'P∽△TPR,∴,即,整理,得t2-t+3=0,∵△=b2﹣4ac=﹣<0,∴此方程無解,故不存在∠O'PR=90°的情況;綜上所述,△O′PR為直角三角形時,t的值為﹣3或.【點睛】本題主要考查二次函數(shù)的圖象和相似三角形的綜合,添加合適的輔助線,構(gòu)造相似三角形,是解題的關(guān)鍵.23、①詳見解析;②,k=1【分析】①求出,即可證出結(jié)論;②設(shè)另一根為x1,根據(jù)根與系數(shù)的關(guān)系即可求出結(jié)論.【詳解】①解:=k2+8>0∴方程有兩個不相等實數(shù)根②設(shè)另一根為x1,由根與系數(shù)的關(guān)系:∴,k=1【點睛】此題考查的是判斷一元二次方程根的情況和根與系數(shù)的關(guān)系,掌握與根的情況和根與系數(shù)的關(guān)系是解決此題的關(guān)鍵.24、(1);(2).【分析】(1)一共有3種等可能的結(jié)果,恰為類的概率是(2)根據(jù)題意列出所有等可能的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)(2)甲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版八年級數(shù)學(xué)上冊13.3.1《等腰三角形(2)》聽評課記錄
- 蘇教版一年級數(shù)學(xué)上冊口算練習(xí)題三
- 法人股東對外-股權(quán)轉(zhuǎn)讓協(xié)議書范本
- 綠地租賃合同范本
- 資產(chǎn)委托經(jīng)營管理合同范本
- 汽車租賃業(yè)務(wù)合作協(xié)議書范本
- 宿遷房屋租賃合同范本
- 人力資源戰(zhàn)略合作框架協(xié)議書范本
- 2025年度年度單位向單位教育項目借款合同
- 醫(yī)療服務(wù)協(xié)議書范本
- 《工作場所安全使用化學(xué)品規(guī)定》
- 裝飾圖案設(shè)計-裝飾圖案的形式課件
- 2022年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)考試筆試試題及答案解析
- 護(hù)理學(xué)基礎(chǔ)教案導(dǎo)尿術(shù)catheterization
- ICU護(hù)理工作流程
- 廣東版高中信息技術(shù)教案(全套)
- 市政工程設(shè)施養(yǎng)護(hù)維修估算指標(biāo)
- 短視頻:策劃+拍攝+制作+運營課件(完整版)
- 石家莊鐵道大學(xué)四方學(xué)院畢業(yè)設(shè)計46
- 分布式光伏屋頂調(diào)查表
- 部編版五年級語文下冊第四單元課時作業(yè)本有答案
評論
0/150
提交評論