版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.中國人很早開始使用負數(shù),中國古代數(shù)學(xué)著作《九章算術(shù)》的“方程”一章,在世界數(shù)學(xué)史上首次正式引入負數(shù).如果收入100元記作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元2.下列關(guān)于反比例函數(shù),結(jié)論正確的是()A.圖象必經(jīng)過B.圖象在二,四象限內(nèi)C.在每個象限內(nèi),隨的增大而減小D.當時,則3.在正方形網(wǎng)格中,的位置如圖所示,則的值為()A. B. C. D.4.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或15.如圖,點A,B,C在⊙O上,∠A=50°,則∠BOC的度數(shù)為()A.40° B.50° C.80° D.100°6.如圖,點,為直線上的兩點,過,兩點分別作軸的平行線交雙曲線()于、兩點.若,則的值為()A.12 B.7 C.6 D.47.甲、乙、丙、丁四人各進行了次射擊測試,他們的平均成績相同,方差分別是則射擊成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁8.拋物線()的部分圖象如圖所示,與軸的一個交點坐標為,拋物線的對稱軸是,下列結(jié)論是:①;②;③方程有兩個不相等的實數(shù)根;④;⑤若點在該拋物線上,則,其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°10.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧,點是這段弧所在圓的圓心,,點是的中點,D是AB的中點,且,則這段彎路所在圓的半徑為()A. B. C. D.二、填空題(每小題3分,共24分)11.某同學(xué)想要計算一組數(shù)據(jù)105,103,94,92,109,85的方差,在計算平均數(shù)的過程中,將這組數(shù)據(jù)中的每一個數(shù)都減去100,得到一組新數(shù)據(jù)5,3,-6,-8,9,-15,記這組新數(shù)據(jù)的方差為,則______(填“>”、“=”或“<”).12.如圖,PA,PB是⊙O的切線,切點分別是點A和B,AC是⊙O的直徑.若∠P=60°,PA=6,則BC的長為__________.13.方程x2+2x﹣1=0配方得到(x+m)2=2,則m=_____.14.近日,某市推出名師公益大課堂.據(jù)統(tǒng)計,第一批公益課受益學(xué)生2萬人次,第三批公益課受益學(xué)生2.42萬人次.如果第二批,第三批公益課受益學(xué)生人次的增長率相同,則這個增長率是______.15.如圖,一段與水平面成30°角的斜坡上有兩棵樹,兩棵樹水平距離為,樹的高度都是.一只小鳥從一棵樹的頂端飛到另一棵樹的頂端,小鳥至少要飛____________.16.閱讀對話,解答問題:分別用、表示小冬從小麗、小兵袋子中抽出的卡片上標有的數(shù)字,則在(,)的所有取值中使關(guān)于的一元二次方程有實數(shù)根的概率為_________.17.某校七年級共名學(xué)生參加數(shù)學(xué)測試,隨機抽取名學(xué)生的成績進行統(tǒng)計,其中名學(xué)生成績達到優(yōu)秀,估計該校七年級學(xué)生在這次數(shù)學(xué)測試中達到優(yōu)秀的人數(shù)大約有______人.18.在一次摸球?qū)嶒炛?,摸球箱?nèi)放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質(zhì)都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內(nèi)黃色乒乓球的個數(shù)很可能是________.三、解答題(共66分)19.(10分)已知關(guān)于x的一元二次方程(1)當m取何值時,這個方程有兩個不相等的實根?(2)若方程的兩根都是正數(shù),求m的取值范圍;(3)設(shè)是這個方程的兩個實根,且,求m的值.20.(6分)如圖,拋物線經(jīng)過點,點,交軸于點,連接,.(1)求拋物線的解析式;(2)點為拋物線第二象限上一點,滿足,求點的坐標;(3)將直線繞點順時針旋轉(zhuǎn),與拋物線交于另一點,求點的坐標.21.(6分)一個二次函數(shù)的圖象經(jīng)過(3,1),(0,-2),(-2,6)三點.求這個二次函數(shù)的解析式并寫出圖象的頂點.22.(8分)某種電腦病毒傳播非常快,如果一臺電腦被感染,經(jīng)過兩輪感染后就會有81臺電腦被哦感染.(1)每輪感染中平均一臺電腦會感染幾臺電腦?(2)若病毒得不到有效控制,3輪感染后,被感染的電腦會不會超過700臺?(3)輪(為正整數(shù))感染后,被感染的電腦有________臺.23.(8分)畫出如圖所示的幾何體的主視圖、左視圖和俯視圖.24.(8分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.25.(10分)對于平面直角坐標系中的兩個圖形K1和K2,給出如下定義:點G為圖形K1上任意一點,點H為K2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.(1)填空:①原點O與線段BC的“近距離”為;②如圖1,正方形PQMN在△ABC內(nèi),中心O’坐標為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為;(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;(3)如圖2,已知點D為線段AB上一點,且D(5,-2),將△ABC繞點A順時針旋轉(zhuǎn)α(0o<α≤180o),將旋轉(zhuǎn)中的△ABC記為△AB’C’,連接DB’,點E為DB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉(zhuǎn)過程中點E運動形成的圖形與正方形PQMN的“近距離”.26.(10分)在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.(1)如圖1,當點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關(guān)系是,與的位置關(guān)系是;(2)當點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).(3)如圖4,當點在線段的延長線上時,連接,若,,求四邊形的面積.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題分析:“+”表示收入,“—”表示支出,則—80元表示支出80元.考點:相反意義的量2、B【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),逐一判斷選項,即可得到答案.【詳解】∵,∴A錯誤,∵k=-8<0,即:函數(shù)的圖象在二,四象限內(nèi),∴B正確,∵k=-8<0,即:在每個象限內(nèi),隨的增大而增大,∴C錯誤,∵當時,則或,∴D錯誤,故選B.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),掌握比例系數(shù)k的意義與增減性,是解題的關(guān)鍵.3、A【分析】延長AB至D,使AD=4個小正方形的邊長,連接CD,先證出△ADC是直角三角形和CD的長,即可求出的值.【詳解】解:延長AB至D,使AD=4個小正方形的邊長,連接CD,如下圖所示,由圖可知:△ADC是直角三角形,CD=3個小正方形的邊長根據(jù)勾股定理可得:AC=個小正方形的邊長∴故選A.【點睛】此題考查的是求一個角的正弦值,掌握構(gòu)造直角三角形的方法是解決此題的關(guān)鍵.4、D【分析】當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.5、D【分析】由題意直接根據(jù)圓周角定理求解即可.【詳解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故選:D.【點睛】本題考查圓周角定理的運用,熟練掌握圓周角定理是解題的關(guān)鍵.6、C【分析】延長AC交x軸于E,延長BD交x軸于F.設(shè)A、B的橫坐標分別是a,b,點A、B為直線y=x上的兩點,A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.根據(jù)BD=2AC即可得到a,b的關(guān)系,然后利用勾股定理,即可用a,b表示出所求的式子從而求解.【詳解】延長AC交x軸于E,延長BD交x軸于F.設(shè)A、B的橫坐標分別是a,b.∵點A、B為直線y=x上的兩點,∴A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.∵C、D兩點在交雙曲線(x>0)上,則CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),兩邊平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故選:C.【點睛】本題考查了反比例函數(shù)與勾股定理的綜合應(yīng)用,正確利用BD=2AC得到a,b的關(guān)系是關(guān)鍵.7、C【分析】根據(jù)方差的意義,即可得到答案.【詳解】∵丙的方差最小,∴射擊成績最穩(wěn)定的是丙,故選C.【點睛】本題主要考查方差的意義,掌握方差越小,一組數(shù)據(jù)越穩(wěn)定,是解題的關(guān)鍵.8、D【分析】根據(jù)二次函數(shù)的對稱性補全圖像,再根據(jù)二次函數(shù)的性質(zhì)即可求解.【詳解】如圖,∵與軸的一個交點坐標為,拋物線的對稱軸是,實驗求出二次函數(shù)與x軸的另一個交點為(-2,0)故可補全圖像如下,由圖可知a<0,c>0,對稱軸x=1,故b>0,∴,①錯誤,②對稱軸x=1,故x=-,∴,正確;③如圖,作y=2圖像,與函數(shù)有兩個交點,∴方程有兩個不相等的實數(shù)根,正確;④∵x=-2時,y=0,即,正確;⑤∵拋物線的對稱軸為x=1,故點在該拋物線上,則,正確;故選D【點睛】此題主要考查二次函數(shù)的圖像,解題的關(guān)鍵是熟知二次函數(shù)的對稱性.9、C【解析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).10、A【分析】根據(jù)題意,可以推出AD=BD=20,若設(shè)半徑為r,則OD=r﹣10,OB=r,結(jié)合勾股定理可推出半徑r的值.【詳解】解:,,在中,,設(shè)半徑為得:,解得:,這段彎路的半徑為故選A.【點睛】本題主要考查垂徑定理的應(yīng)用、勾股定理的應(yīng)用,關(guān)鍵在于設(shè)出半徑為r后,用r表示出OD、OB的長度.二、填空題(每小題3分,共24分)11、=【分析】根據(jù)一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個非零常數(shù),那么這組數(shù)據(jù)的波動情況不變,即方差不變,即可得出答案.【詳解】解:∵一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個非零常數(shù),它的平均數(shù)都加上或減去這一個常數(shù),兩數(shù)進行相減,方差不變,∴故答案為:=.【點睛】本題考查的知識點是數(shù)據(jù)的平均數(shù)與方差,需要記憶的是如果將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上同一個非零常數(shù),那么這組數(shù)據(jù)的方差不變,但平均數(shù)要變,且平均數(shù)增加這個常數(shù).12、【分析】連接AB,根據(jù)PA,PB是⊙O的切線可得PA=PB,從而得出AB=6,然后利用∠P=60°得出∠CAB為30°,最后根據(jù)直角三角形中30°角的正切值進一步計算即可.【詳解】如圖,連接AB,∵PA,PB是⊙O的切線,∴PA=PB,∵∠P=60°,∴△ABP為等邊三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC為直角三角形,∴,∴BC=AB×=,故答案為:.【點睛】本題主要考查了圓中切線長與三角函數(shù)的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.13、1【解析】試題解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,則m=1;故答案為1.14、【分析】設(shè)增長率為x,根據(jù)“第一批公益課受益學(xué)生2萬人次,第三批公益課受益學(xué)生2.42萬人次”可列方程求解.【詳解】設(shè)增長率為x,根據(jù)題意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.∴增長率為10%.故答案為:10%.【點睛】本題考查了一元二次方程的應(yīng)用-增長率問題,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.15、1【分析】依題意可知所求的長度等于AB的長,通過解直角△ABC即可求解.【詳解】如圖,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【點睛】本題考查了解直角三角形的應(yīng)用?坡度坡角問題.應(yīng)用問題盡管題型千變?nèi)f化,但關(guān)鍵是設(shè)法化歸為解直角三角形問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.16、.【解析】試題分析:用列表法易得(a,b)所有情況,看使關(guān)于x的一元二次方程x3-ax+3b=3有實數(shù)根的情況占總情況的多少即可.試題解析:(a,b)對應(yīng)的表格為:∵方程x3-ax+3b=3有實數(shù)根,∴△=a3-8b≥3.∴使a3-8b≥3的(a,b)有(3,3),(4,3),(4,3),∴p(△≥3)=.考點:3.列表法與樹狀圖法;3.根的判別式.17、152.【解析】隨機抽取的50名學(xué)生的成績是一個樣本,可以用這個樣本的優(yōu)秀率去估計總體的優(yōu)秀率,從而求得該校七年級學(xué)生在這次數(shù)學(xué)測試中達到優(yōu)秀的人數(shù).【詳解】隨機抽取了50名學(xué)生的成績進行統(tǒng)計,共有20名學(xué)生成績達到優(yōu)秀,∴樣本優(yōu)秀率為:20÷50=40%,又∵某校七年級共380名學(xué)生參加數(shù)學(xué)測試,∴該校七年級學(xué)生在這次數(shù)學(xué)測試中達到優(yōu)秀的人數(shù)為:380×40%=152人.故答案為:152.【點睛】本題考查了用樣本估計總體,解題的關(guān)鍵是求樣本的優(yōu)秀率.18、20【解析】先設(shè)出白球的個數(shù),根據(jù)白球的頻率求出白球的個數(shù),再用總的個數(shù)減去白球的個數(shù)即可.【詳解】設(shè)黃球的個數(shù)為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個數(shù)很可能是50-30=20(個).故答案為:20.【點睛】本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關(guān)鍵.三、解答題(共66分)19、(1);(2);(3)m無解..【分析】(1)由根的判別式得出不等式,求出不等式的解集即可;(2)由根與系數(shù)的關(guān)系得出不等式,求出不等式的解集即可;(3)由根與系數(shù)的關(guān)系得出x1+x2=2,x1x2=m-1,將變形后代入,即可求出答案.【詳解】解:(1)∵這個方程有兩個不相等的實根∴,即解得.(2)由一元二次方程根與系數(shù)的關(guān)系可得:,,∵方程的兩根都是正數(shù)∴,即∴又∵∴m的取值范圍為(3)∵∴即,將,代入可得:,解得.而,所以m=4不符合題意,故m無解.【點睛】本題考查了由一元二次方程根的情況求參數(shù),根與系數(shù)的關(guān)系,熟練掌握根的情況與△之間的關(guān)系與韋達定理是關(guān)鍵.20、(1);(2)或;(3).【分析】(1)將A,C坐標代入中解出即可;(2)由可得,設(shè),利用三角形的面積求法建立方程求解即可得出結(jié)論;(3)延長AC與BE交于點F,易證△ABC是直角三角形可知△ACF是等腰直角三角形,由,,可得A是CF的中點,所以F(2,-2),進而確定直線BF的解析式為,即可求出E點坐標.【詳解】(1)將點,代入得:∴,,∴;(2)由(1)可得,令y=0,解得,則,∴,,∴,∵,∴,設(shè)直線的解析式為,∴,∴,∴,如圖,過點作軸交于,設(shè),∴∴,∴或,∴或;(3)延長與交于點,是直角三角形,∵直線繞點順時針旋轉(zhuǎn),∴,∴是等腰直角三角形,∵,,∴是的中點,∴,∴直線的解析式為,則,∴或,∵與重合舍去,∴.【點睛】本題考查二次函數(shù)的圖象及性質(zhì),直角三角形的性質(zhì),本題是綜合題,掌握待定系數(shù)法求解析式,熟練的將函數(shù)與三角形相結(jié)合是解題的關(guān)鍵.21、二次函數(shù)為,頂點.【分析】先設(shè)該二次函數(shù)的解析式為y=ax2+bx+c(a≠0),利用待定系數(shù)法求a,b,c的值,得到二次函數(shù)的解析式,然后化為頂點式,即可得到頂點坐標.【詳解】解:∵二次函數(shù)的圖象經(jīng)過,可設(shè)所求二次函數(shù)為,由已知,函數(shù)的圖象不經(jīng)過,兩點,可得關(guān)于、的二元一次方程組解這個方程,得∴二次函數(shù)為:;化為頂點式得:∴頂點為:.【點睛】本題考查了用待定系數(shù)法求函數(shù)解析式的方法,同時還考查了方程組的解法以及頂點公式求法等知識,難度不大.22、(1)8;(2)會;(3).【分析】(1)根據(jù)題意列出一元二次方程,求解即可.(2)根據(jù)題意計算出3輪感染后被感染的電腦數(shù),與700進行比較即可.(3)根據(jù)題中規(guī)律,寫出函數(shù)關(guān)系式即可.【詳解】(1)解:設(shè)每輪感染中平均每一臺電腦會感染臺電腦,依題意得:解得(舍去)(2)答:3輪感染后,被感染的電腦會超過700臺.(3)由(1)得每輪感染中平均每一臺電腦會感染8臺電腦第一輪:被感染的電腦有臺;第二輪:被感染的電腦有臺;第三輪:被感染的電腦有臺;故我們可以得出規(guī)律:輪(為正整數(shù))感染后,被感染的電腦有臺【點睛】本題考查了一元二次方程的實際應(yīng)用和歸納總結(jié)題,掌握解一元二次方程的方法和找出關(guān)于n的函數(shù)關(guān)系式是解題的關(guān)鍵.23、見解析.【分析】分別從正面、左面、上面看得到的圖形即可.看到的棱用實線表示,實際存在但是被擋住看不見的棱用虛線表示.【詳解】【點睛】本題考查了三視圖的作圖.24、(1)1﹣15;(2)15π【分析】(1)連接OE,過O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的長,進而求得EB的長.(2)連接OD,則在直角三角形ODQ中,可求得∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,則得出的長度.【詳解】解:(1)連接OE,過O作OF⊥BM于F,則四邊形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)連接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π?60=15π.【點睛】本題考查了直角三角形的性質(zhì),弧長的計算、矩形的性質(zhì)以及垂徑定理,是基礎(chǔ)知識要熟練掌握.25、(1)①2;②;(2)或;(3)點E運動形成的圖形與正方形PQMN的“近距離”為.【分析】(1)①由垂線段最短,即可得到答案;②根據(jù)題意,找出正方形PQMN與△ABC的邊界的“近距離”為1,的臨界點,然后分別求出m的最小值和最大值,即可得到m的取值范圍;(2)根據(jù)題意,拋物線與△ABC的“近距離”為1時,可分為兩種情況:當點C到拋物線的距離為1,即CD=1;當拋物線與線段AB的距離為1時,即GH=1;分別求出a的值,即可得到答案;(3)根據(jù)題意,取AB的中點F,連接EF,求出EF的長度,然后根據(jù)題意,求出點F,點Q的坐標,求出FQ的長度,即可得到EQ的長度,即可得到答案.【詳解】解:(1)①∵B(9,2),C(,2),∴點B、C的縱坐標相同,∴線段BC∥x軸,∴原點O到線段BC的最短距離為2;即原點O與線段BC的“近距離”為2;故答案為:2;②∵A(-1,-8),B(9,2),C(-1,2),∴線段BC∥x軸,線段AC∥y軸,∴AC=BC=10,△ABC是等腰直角三角形,當點N與點O重合時,點N與線段AC的最短距離為1,則正方形PQMN與△ABC的邊界的“近距離”為1,此時m為最小值,∵正方形的邊長為,由勾股定理,得:,∴,(舍去);當點Q到線段AB的距離為1時,此時m為最大值,如圖:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值為:,∴m的取值范圍為:;故答案為:;(2)拋物線C:,且,若拋物線C與△ABC的“近距離”為1,由題可知,點C與拋物線的距離為1時,如圖:∵點C的坐標為(,2),∴但D的坐標為(,3),把點D代入中,有,解得:;當線段AB與拋物線的距離為1時,近距離為1,如圖:即GH=1,點H在拋物線上,過點H作AB的平行線,線段AB與y軸相交于點F,作FE⊥EH,垂足為E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵點A(-1,-8),B(9,2),設(shè)直線AB為,∴,解得:,∴直線AB的解析式為:,∴直線EH的解析式為:;∴聯(lián)合與,得,整理得:,∵直線EH與拋物線有一個交點,∴,解得:;綜合上述,a的值為:或;(3)由題意,取AB的中點F,連接EF,如圖:∵點A(-1,-8),B(9,2),∴,在中,F(xiàn)是AD的中點,點E是的中點,∴,∵點D的坐標為(5,-2),A(-1,-8),∴點F的坐標為(2,),∵在正方形PNMQ中,中心點的坐標為(5,),∴點Q的坐標為(6,),∴,∴;∴點E運動形成的圖形與正方形PQMN的“近距離”為.【點睛】本題考查了圖形的運動問題和最短路徑問題,考查了二次函數(shù)的性質(zhì),正方形的性質(zhì),等腰直角三角形的性質(zhì),一次函數(shù)的平移,勾股定理,旋轉(zhuǎn)的性質(zhì),根的判別式等知識,解題的關(guān)鍵是熟練掌握所學(xué)的知識,正確作出輔助線,作出臨界點的圖形,從而進行分析.注意運用數(shù)形結(jié)合的思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人購房合同范本及注意事項
- 草莓育種與研發(fā)方案
- 市政道路提升美觀性的設(shè)計方案
- 教師信息技術(shù)應(yīng)用實戰(zhàn)演練方案
- 人工智能對房地產(chǎn)營銷的作用淺析
- 公寓自然災(zāi)害應(yīng)急處理措施
- 公共衛(wèi)生領(lǐng)域醫(yī)療器械采購管理規(guī)范
- AI科技合作協(xié)議
- 旅游行業(yè)工傷保險風(fēng)險控制
- 包頭2024年10版小學(xué)6年級上冊英語第3單元寒假試卷
- 廠房委托招商合同協(xié)議書
- 《短歌行》省公開課金獎全國賽課一等獎微課獲獎?wù)n件
- 職業(yè)技術(shù)學(xué)校《直播運營實務(wù)》課程標準
- 戀家房子租賃合同模板
- 部編版語文二年級上冊第五單元大單元教學(xué)設(shè)計核心素養(yǎng)目標
- 2023~2024學(xué)年廣東省廣州市各區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試題匯編:旋轉(zhuǎn)(含解析)
- 特種設(shè)備安全管理考試題庫附答案A (2024年)
- DL-T 1160-2021 電站鍋爐受熱面電弧噴涂施工及驗收規(guī)范
- NB-T+10488-2021水電工程砂石加工系統(tǒng)設(shè)計規(guī)范
- 責(zé)任保險行業(yè)發(fā)展趨勢及前景展望分析報告
- 辦公室租賃協(xié)議樣本
評論
0/150
提交評論